3DA: Data-Driven Data Assimilation Applications to the Lorenz system and simulated sea surface heights
Yicun Zhen, Pierre Tandeo, Stéphanie Leroux, Julien Le Sommer, Sammy Metref, Pierre Ailliot, Ronan Fablet, Bertrand Chapron, Cédric Herzet, Thierry Penduff, et al.

To cite this version:
Yicun Zhen, Pierre Tandeo, Stéphanie Leroux, Julien Le Sommer, Sammy Metref, et al. 3DA: Data-Driven Data Assimilation Applications to the Lorenz system and simulated sea surface heights. EGU 2019: European Geosciences Union, Apr 2019, Vienna, Austria. pp.1. hal-02108347

HAL Id: hal-02108347
https://hal-imt-atlantique.archives-ouvertes.fr/hal-02108347
Submitted on 24 Apr 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.
Method[1]: Analog Forecast + EnKS

► Given a huge historical dataset \(\mathcal{C} \) (the catalog);
► Given the current state estimate \(x_t \), search for the analogs of \(x_t \) within \(\mathcal{C} \);
► Build a local model based on the analogs and the corresponding successors;
► Apply the local model on \(x_t \) to do the forecast.

Summary:
► AnDA captures more small scale flows
► AnDA produces more informative variance maps
► AnDA relies on catalog

OSSE of simulated sea surface height (SSH) in the Gulf of Mexico
► Dataset: the OCCIPUT[2] simulated SSH, 50 members, 20 years
► Truth: member #1 in year 20
► Observations: simulated along-tracks from the real altimetry in 2004
► (AnDA) catalog: member #2-#50, in year 1 - year 19
► (AnDA) ensemble size: 1000
► (OI) \(B = B_{\text{clim}, x} \otimes \exp(dt/L_t^2) \) where \(B_{\text{clim}, x} \) is the spatial climatology calculated from the OCCIPUT dataset
► (OI) \(L_t = 20 \) (days)
► (OI) radius of influence = 1.5 (degrees)

References:
[1] R. Lguensat et al., The analog data assimilation, MWR, 2017
[2] L. Bessières et al., Development of a probabilistic ocean modelling system based on NEMO 3.5: application at eddying resolution, GRL, 2017

Contact: yicun.zhen@imt-atlantique.fr