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Abstract—We present the reliability confidence level as
a way to quantify reliability for ultra reliable connections
in uncertain environments subject to random block-error
rate fluctuations. As ultra reliability is usually linked to the
low latency constraint, we analyze the reliability confidence
level using the latest results on block-error rate in the finite
blocklength regime. The analysis is carried out for OFDM-
based systems over Rayleigh slow frequency block-fading
channels. The reliability confidence level is bounded using
analytic expressions which are then applied to solve two
optimization problems. We first find the minimal resources
(or codeword length) to guarantee a target reliability with
a given confidence. We then investigate an optimal resource
sharing strategy within the context of 5G New Radio.
The solutions for optimization problems are obtained
without resorting to cumbersome Monte-Carlo simulations.
Numerical evaluations validate the relevance as well as the
tightness of the proposed bounds and approximations.

I. INTRODUCTION

Mission critical applications such as factory remote
control, vehicle autopilot or telesurgery require Ultra
Reliable Low Latency Communication (URLLC) which
is among the intrinsic novelties of 5G networks. Re-
liability is defined as the probability of successfully
transmitting a certain number of information bytes within
a certain delay at a certain channel quality [1, Sec. 7.9].
The “success probability” is measured by the BLock
Error Rate (BLER) ranging from 10−5 down to 10−9

in the Ultra Reliable (UR) context. However, the term
“channel quality” must not be neglected. Indeed, if the
channel quality changes randomly, the BLER is also a
random variable and the assumed reliable connection
may unexpectedly become unreliable. In other words,
thinking only in terms of average BLER value even as
low as e.g. 10−9 is not sufficient to assess reliability.

To address this concern, we introduce hereafter the
Reliability Confidence level as a way to quantify relia-
bility:

PR , Pr{PE ≤ ε0} (1)

where the BLER is a random variable denoted by PE and
where ε0 denotes the targeted Quality of Service (QoS)
BLER threshold (or simply target BLER). The random
nature of BLER is induced by stochastic factors such as
fading, inter-vehicle speed, mobile direction changing.

Note that PR is similar in essence to the Probably
Correct Reliability introduced in [2]: both are based
on the meta-probability concept [3]. However, [2] uses
asymptotic outage probability whereas the present paper
resorts to recent results on channel decoding error in the
Finite Blocklength (FBL) regime [4], [5] to characterize
the BLER. Our approach is motivated by the fact that
although the BLER can be made arbitrarily small by
allowing the code length to grow arbitrarily large, such
an assumption may violate the “within a certain delay”
constraint inherent to the definition of UR [1, Sec. 7.9].

It is worth mentioning that PR was implicitly in-
troduced in NarrowBand-IoT (NB-IoT) [6, Sec. 7.23]
as well as in the first versions of 5G [7, Sec. 8.1]
under the Radio Link Monitoring (RLM) concept at link
layer. Generally speaking, RLM consists of individual
tests that estimate the BLER of hypothetical control-
plane transmissions, then declare Radio Link Failure
(RLF) if the estimated BLERs repeatedly exceed certain
thresholds. A RLF declaration triggers in turn transmitter
turning-off, cell research, and attach procedure [8, Sec.
22.7, p. 526][9]. As a consequence, even if the average
BLER is small, radio link level connections may be
unreliable due to these repeated connection resets.

There are other approaches to characterize reliability.
A popular one is to employ queuing analysis on top of
physical layer transmissions to assess the probability that
the aggregate delay exceeds a given value. One such
probability measure named delay violation probability
(DVP) has been recently investigated in [10]. Developing
the idea of DVP, but for a non-constant flow of packets
and with the incorporation of data freshness notion,
[11] provides the results for peak age of information,
which “describes the maximum time that is elapsed since
the last received update”, over binary-input Additive
White Gaussian Noise (AWGN) channels. In [12], the
work of [11] is extended using the “parameter-s Ran-
dom Coding Union bound” to characterize the BLER
of short packet transmissions in block-fading channels.
Other results concerning queuing-related DVP can be
found in [13] where effective bandwidth is analyzed, and
in [14] where the concept of effective capacity is used.



In this paper, we develop the concept of Reliability
Confidence level PR in (1) for OFDM-based systems
over Rayleigh frequency-domain block-fading and time-
domain slow fading channels in the FBL regime. As
PR is almost analytically intractable, especially in the
FBL regime, we resort to probabilistic bounds and then
approximate them to obtain simple yet relatively tight
estimates. These approximations are then used to find
the smallest number of resources (codeword length) n
required to guarantee a target BLER ε0 with confidence
α, i.e. to ensure PR(ε0, n) ≥ α. It is worth mentioning
that even with the novel method of [5], the smallest-n
hunt requires i) sampling the range of possible values
for n resulting in a set of candidate values denoted by
ncandidate; ii) an exhaustive test of all candidate values
ncandidate and iii) for each ncandidate, a time-consuming
Monte-Carlo sampling to evaluate PR(ε0, ncandidate). Our
results simplify the process by providing analytic expres-
sions allowing to closely estimate the minimum value of
n such that PR(ε0, n) ≥ α.

The paper is organized as follows. The system model
is described in Section II. Statement of the code length
optimization problem, the Reliability Confidence level
PR analysis and the analytic approximate bound solu-
tions are given in Section III. Section IV is dedicated to
another application of our results, namely identifying an
optimal resource sharing strategy within the context of
5G New Radio (NR) [15].

Notations: Upper-case letters are used to denote ran-
dom variables (RV) and their realizations are written
in lower-case. Boldface letters are for vectors. FZ(.) is
the cumulative density function (CDF) of RV Z. Q(.)
is the Normal distribution Q-function. Exp(µ) denotes
the Exponential distribution with mean µ. dxe is the
smallest integer number greater than or equal to x. We
use x = a+ as a shortcut for [x ≈ a and x ≥ a].

II. SYSTEM MODEL

We consider a single-antenna OFDM-based system
similar to 5G NR [15]. As illustrated in Fig. 1, in
the time domain, the channel is slow fading, i.e. the
channel remains unchanged during a certain number of
transmissions (coherence time). In the frequency domain,
the channel is block-fading and a user is allocated nc
subcarriers within a fading block to form an allocation
block. Coding is performed in the frequency domain
across L such blocks; hence the codeword length is
n = ncL. Note that both L and nc are interchangeable
as long as the block fading assumption is still valid. The
baseband received signal associated to the l−th block,
1 ≤ l ≤ L, is equal to

HlXl + Wl (2)

where Xl ∈ Cnc contains the transmitted symbols within
frequency block l and where Wl is the AWGN channel
noise distributed according to the normal distribution

Fig. 1. System model under consideration. Coding is performed over L
(frequency) allocation blocks, each composed of nc subcarriers (block-
fading). In time domain, the channel remains unchanged over a long
coherence time (slow fading), then changes to other values.

CN (0, Inc). The received signal is dominated by scat-
tered diffuse components: channel coefficients Hl are
distributed according to a Rayleigh fading, i.e. Hl ∼
CN (0, 1). The transmitted symbols satisfy the power
constraint ‖Xl‖2 = ncµ. Let Yl denotes the Signal to
Noise Ratio (SNR) associated to the reception of block
l; Yl is exponentially distributed with mean µ. Hereafter
we assume a coherent receiver with perfect channel state
information (CSIR), a reasonable assumption for slow
fading channels. Hence the receiver knows perfectly Hl.

The motivation for the slow fading assumption comes
from the LTE standard where coherence time may be 400
times larger than one transmission slot (see [16, Sec.
II]). This number can be even larger in 5G NR with
mini-slots [15]. Nonetheless and departing from [16],
[17] where one transmission is assumed per coherence
time, many transmissions are considered in our setup.
Moreover, coding in [16], [17] is performed within
one coherence time and one frequency coherence block
only whereas the present analysis considers codewords
spanning several fading blocks in the frequency domain.
Another interesting analysis for FBL coding over fading
is [18]. But the latter assumes no CSI and Monte-Carlo
simulations are required to assess the performance.

Considering the abovementioned assumptions and the
fact that the channel codes used in practice are mostly
AWGN codes, i.e. codes designed and optimized for
AWGN channels, within each coherence time, the system
model (2) is tantamount to transmitting over L indepen-
dent parallel AWGN sub-channels with respective SNR
Y1, . . . , YL and coding across those L sub-channels.
Collecting the SNRs in vector form Y = {Yl}Ll=1, the
overall block-error probability PE for the model (2) is
well approximated by the Refined Normal Approxima-
tion (RNA) [5]:

PE(n, k, L,Y) . Q

(
√
n
S − k/n+ log(2n)

2n√
V

)
(3)



with k the amount of information (in nats), S ,
1
L

∑L
i=1 log(1 + Yi), V , 1

L

∑L
i=1

(
1− (1 + Yi)

−2).
Because Y changes randomly every coherence time, PE
in (3) is a random variable and (1) is applicable.

It is necessary to emphasize that (3) is not the original
Normal approximation given in [4] that derives from the
PPV (meta) converse bound and the κβ achievability
bound of the same paper but without the third-order term
log(2n)

2n . The latter was first introduced in [19] where
the authors, in evaluating the Random Coding Union
(RCU) achievability bound which is tighter than the κβ
bound, not only improve the tightness of the Normal
approximation of [4], but also confirm that the RNA (3)
can be “taken as a reference for achievability” (see
[19, inequality (9)] and the related remarks, especially
the fourth one for parallel AWGN channels; also the
discussion at the end of [5, Sec. IV-H]). Because of
the achievable nature of (3), analyzing (1) with (3)
corresponds to the worst-case scenario which is well-
suited to UR applications. In order to assess the tightness
of (3), the results obtained in Sections III and IV with
the RNA will be compared to those obtained with the
PPV converse bound [5].

III. RELIABILITY CONFIDENCE LEVEL ANALYSIS

The random nature of PE in (1) prevents it from being
upper-bounded by ε0. Thus we are interested in finding
the smallest codeword length n so that the probability
PR , Pr{PE ≤ ε0} is higher than a confidence level α0:

OP1: n̂ = min
n≥0

n subject to PR ≥ α0

Since latency is related to codeword length1, OP1 can be
interpreted as the search for the lowest possible latency
that guarantees the required reliability.

Except for L = 1 which is trivial, the exact calculation
of PR involves L-dimensional integrals which becomes
quickly intractable. We first provide in subsection III-A
upper and lower bounds on PR. Tight approximations
of these bounds are presented in subsection III-B, from
which closed-form approximate solutions of problem
OP1 are derived in subsection III-C.

A. Upper and lower bounds on PR

Substituting (3) into (1) yields:

PR = Pr
{
Z ≥ θ , Q−1(ε0)

}
(4)

where Z ,
√

n
V

(
S − k

n + log(2n)
2n

)
. Hence PR(θ) is the

complementary CDF of the random variable Z.

1For example, in OFDM-based systems, increasing codeword length
n by fixing the number of allocation blocks L is equivalent to increas-
ing nc. This requires reducing subcarrier spacing, thereby increasing
the duration of OFDM symbols (latency).

Theorem III.1. For typical setups such that ε0 < 0.5,
PR defined in (4) is bounded below and above by:

PR ≥ Plo , 1− FS
(

θ√
n

+
k

n
− log(2n)

2n

)
(5)

PR ≤ Pup , 1− FS
(
k

n
− log(2n)

2n

)
(6)

Proof. Let Ω = S − k
n + log(2n)

2n ,

PR = Pr{Z ≥ θ ∩ Ω > 0}+ Pr{Z ≥ θ ∩ Ω ≤ 0} (7)
= Pr{Z ≥ θ ∩ Ω > 0} (8)

where the second term of (7) equals to 0 because ε0 <
0.5 and θ = Q−1(ε0) > 0. The upper-bound Pup can be
obtained by using the Fréchet inequality:

PR = Pr{Z ≥ θ ∩ Ω > 0} ≤ Pr{Ω > 0} (9)

Regarding Plo, (5) is proved by letting Z1 =√
n
(
S − k

n + log(2n)
2n

)
=
√
nΩ, and from (8),

PR = Pr{Z ≥ θ | Ω > 0}Pr{Ω > 0} ≥
Pr{Z1 ≥ θ | Ω > 0}Pr{Ω > 0} = Pr{Z1 ≥ θ}

(10)

because θ > 0 and given Ω > 0, we have Z ≥ Z1. �

Note that Pup does not depend on the threshold θ and
can be considered as a variation of the classic outage
probability. Also, the two bounds are consistent in the
sense that

lim
n→+∞

Plo = lim
n→+∞

Pup = 1 (11)

B. Bounds approximations

1) For large L: we leverage the results of [20] (see
also [21, Sec. III-B]) stating that for i.i.d. Yl ∼ Exp(µ),
the S = 1

L

∑L
l=1 log(1 + Yl) is well approximated by a

Gaussian distribution N (ν, σ2) with:

ν = e1/µE1(1/µ),

σ2 =
1

L

(
2

µ
e1/µG4,0

3,4

(
1/µ|0,0,00,−1,−1,−1

)
− ν2

)
(12)

where E1(x) denotes the exponential integral E1(x) ,∫∞
1
t−1e−xtdt and G(.) denotes the Meijer G-function.

Numerical evaluations show that this approximation is
already quite accurate for L ≥ 3 and that the accuracy
improves with L.

2) For L = 2: because of the “low latency” and
“short packet” requirements, this case is of particular
interest and thus deserves a careful dedicated analysis.

Theorem III.2. Let S = 1
2 (log(1 + Y1) + log(1 + Y2))

with Y1, Y2 are i.i.d. Exp(1/λ).
For moderate and large s > 0 such that e2s � 1,

FS(s) ≈ 1− λe2λK−1(λ, λe2s) where K−1(λ, λe2s) is
an incomplete Bessel (leaky aquifer) function [22].

For small s = 0+, FS(s) ≈ 1−eλ−λe2s(λe2s−λ+1).



Sketch of proof. Let U1 = 1 + Y1, U2 = 1 + Y2 and
Z = U1U2 then FS(s) = FZ(e2s). The complementary
CDF of Z is

1− FZ(z) = Pr(U1 ≥ z/U2) = I1 + I2 (13)

where

I1 =

∫ ∞
u2=1

∫ ∞
u1=z/u2

fU1
(u1)fU2

(u2)du1du2

=

∫ z

u2=1

fU2(u2)(1− FU1(z/u2))du2

= λe2λ
∫ z

u=1

e−λu−
λz
u du

(14)

I2 =

∫ ∞
u2=z

∫ ∞
u1=1

fU1
(u1)fU2

(u2)du1du2 = eλ−λz (15)

For large s such that z = e2s � 1, I2 ≈ 0 and
I1 ≈ λe2λ

∫∞
1
e−λu−

λz
u du = λe2λK−1(λ, λz) with

Kν(a, b) ,
∫∞
1

e−at−b/t

tν+1 dt.
For small s, z = 1+ and the interval of integration

[1, z] of I1 is so small that one of many approximations
is I1 ≈ λe2λ(z − 1)e−λu−

λz
u |u=1 = λ(z − 1)eλ−λz ,

yielding the final result. �

An interesting remark is that s = 0+ is of particular
interest for problem OP1 where low target BLER (small
ε0, e.g. 10−9) and high confidence (high α0, e.g. 90%)
are typically required, leading in turn to large codeword
length n (hence n � k and n � θ, since we have
θ = Q−1(10−9) ≈ 6). Therefore the values s at which
FS(s) is evaluated in (5) and (6) are close to 0.

C. Approximate solutions for problem OP1
Approximate solutions to OP1 can now be obtained

from the results of Section III-B by evaluating Plo in
(5) and Pup in (6) over a range of candidate values n.
However, the solution would be much handier if the
exhaustive search over n could be avoided. To this aim,
one can solve the following equations:

Plo(n?) = α0, Pup(n?) = α0 (16)

for the unknowns n? and n? to sandwich the optimal
code length within the restricted interval n? ≤ n ≤ n?.
These equations can be solved by popular root-finding
algorithms, but further simplification is possible by
noting that in typical low-target-BLER high-confidence
scenarios, the solution n is presumably large enough to
assume θ√

n
+ k

n �
log(2n)

2n , so that (16) becomes

FS

(
θ
√
n?

+
k

n?

)
= 1− α0, FS

(
k

n?

)
= 1−α0 (17)

For large L, S is well approximated by a Normal
random variable (see Section III-B), whence

n?=

⌈
4k2(√

∆(≥3)−Q−1(ε0)
)2⌉, n?=

⌈
k

ν+σQ−1(α0)

⌉
(18)

where ∆(≥3) = (Q−1(ε0))2 + 4k(σQ−1(α0) + ν) and
ν, σ are given in (12).

For small L, as discussed at the end of Section III-B,
the low-target-BLER high-confidence assumption leads
to FS(s) ≈ 1− eλ−λe2s(λe2s − λ+ 1) where λ = µ−1

(see Theorem III.2). Let x = λ(e2s− 1) and after a few
mathematical manipulations,

n?=

⌈
4k2(√

∆(2)−Q−1(ε0)
)2⌉, n?=

⌈
2k

log(1+µx)

⌉
(19)

where ∆(2) = (Q−1(ε0))2+2k log(1 + µx) and x is the
solution of log(1 + x) − x = log(α0), which depends
only on α0 and, therefore, can be obtained efficiently by
popular root-finding numerical methods.

D. Examples of numerical results for problem OP1
Approximate solutions to problem OP1, i.e. the small-

est code length n that satisfies given target BLER and
confidence requirements, are illustrated in Fig. 2 for
L = 5 and in Fig. 3 for L = 2. The results are expressed
in terms of the number of subcarriers per allocation block
nc = n/L at fixed L, as a function of the mean SNR µ.
These results are obtained for a typical URLLC setup:
the target BLER is set to ε0 = 10−5 [1, Sec. 7.9] and
the confidence level is set to α0 = 90%.

In both figures, we first note that the results obtained
with the RNA (3) are very close to those obtained with
the PPV converse bound (using the method of [5]),
thereby demonstrating the accuracy of the RNA in
searching for the optimal solution to problem OP1.

As expected, the smallest required n is reduced as the
mean SNR µ increases for all curves.

The bounds Plo and Pup have been evaluated by
Monte-Carlo simulations. It is observed here that the
higher the mean SNR µ, the closer the bounds to PR.
Finally, the proposed analytic approximate solutions of
OP1 given by (18) for Fig. 2 and (19) for Fig. 3, re-
spectively, closely match in both cases the corresponding
Monte-Carlo simulations of (5) and (6). The fact that
Plo tightly approaches PR as the mean SNR µ increases
follows from the fact that for large µ, V is more likely
to be equal to 1, and therefore Z1 is more likely to be
Z (see the proof of Theorem III.1). Regarding now the
gap between PR and Pup, inspection of (9) suggests that
the better the channel quality (higher µ), the easier it is
to achieve the target BLER (event Z > θ = Q−1(ε0)) in
the non-outage case (event Ω = S − k

n + log(2n)
2n > 0).

Note that since L is fixed here, the solution of OP1 can
be expressed as nc = n/L. In OFDM-based systems, in-
creasing nc is tantamount to reducing subcarrier spacing
and, therefore, increasing the OFDM symbol duration
(latency). For that reason, the smallest n, and also the
smallest nc, can be interpreted as the “lowest possible
latency” that guarantee the required target BLER and
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Fig. 2. Smallest code length expressed in n/L to ensure target BLER
10−5 at confidence 90% to transport k = 128 nats for L = 5. The
analytic solution curves are obtained with (18). The Monte-Carlo Plo
and Pup curves are obtained with (5) and (6) respectively.
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Fig. 3. Smallest code length expressed in n/L to ensure target BLER
10−5 at confidence 90% to transport k = 128 nats for L = 2. The
analytic solution curves are obtained with (19). The Monte-Carlo Plo
and Pup curves are obtained with (5) and (6) respectively.

confidence. One may alternatively fix nc and accord-
ingly adjust L. This corresponds to the typical resource
allocation of 5G NR and forms the basis of the resource
sharing problem investigated in the next Section.

IV. RESOURCE SHARING TRADE-OFF

As a second application of the proposed analysis, we
investigate optimization of resource sharing in the con-
text of 5G NR OFDM [15]. To achieve URLLC extreme
requirements, communication systems must operate in
proactive manners. To this end, RLM [6, Sec. 7.23][7,
Sec. 8.1] is designed to predict whether the current con-
nection is reliable by regularly estimating the BLER of a
hypothetical control message transmission from the mon-
itoring of the connection quality metrics such as SNR.
The main purpose of RLM, in brief, is to declare RLF
if after Nout consecutive events [predicted BLER > εout]
(so-called out-of-sync), during the next T310 tests, there

are not Nin consecutive [predicted BLER < εin] events2.
More details of RLM can be found in [8, Sec. 22.7].

To simplify the analysis yet stay focused on the
essence of (1), we assume that connections are in (so-
called link level) outage as soon as the out-of-sync event
occurs. Under this assumption, the optimal resource
sharing problem between two users reads:

OP2: n̂1 = argmax
0≤n1≤N

kef
1 + kef

2

where we define the effective throughput kef
1 + kef

2

as kef
1 , k1

(
1− (Pr{P (user1)

E ≥ ε1})Nout

)
and kef

2 ,

k2

(
1− (Pr{P (user2)

E ≥ ε2})Nout

)
. Here, the number of

available allocation blocks N = n1 +n2 is fixed and
user 1 (resp. user 2) is allocated n1 (resp. n2) blocks to
transport k1 (resp. k2) bits at target BLER ε1 (resp. ε2).

Using the results of the previous section to solve OP2,
we illustrate the numerical solutions in Fig. 4 for two
users of the same type (same target BLER ε1 = ε2 with
same message length k1 = k2), and in Fig. 5 for two
users of different types (ε1 = ε2 but different message
lengths k1 6= k2), respectively. We take a 5G NR frame
structure: N = 50 available blocks, each composed of
nc = 2× 12 subcarriers (mini-slot) [15] 3. The message
lengths are approximately equal to 32 bytes [1].

It is observed that in both figures, there exists an op-
timal, non-necessarily unique resource sharing strategy
that achieves the maximal effective throughput, and our
analysis allows us to characterize such a strategy without
resorting to cumbersome Monte-Carlo simulations. Note
again the tightness of the results obtained with our
approximate formulas compared to Monte-Carlo simu-
lations of both the RNA and the PPV converse bound.
As already mentionned, there may be more than one
strategy that achieves the maximal effective throughput.
Also a more tolerant reliability requirement, i.e. greater
Nout, increases the number of such strategies. This can
be intuitively explained by noting that increasing Nout
reduces exponentially the link level outage probability;
hence the difference between the optimal strategy and
its surrounding ones becomes negligible.

In Fig. 4, two users have the same requirements hence
the optimal sharing strategy is equal sharing, as expected.
On the other hand, if one user needs to transmit a longer
message, intuitively we need to allocate more resource
blocks to that user, as confirmed by Fig. 5.

V. CONCLUSION

In this paper we have introduced the Reliability Con-
fidence level as a way to assess reliability in Ultra

2The counters Nout, Nin and T310 are configured by network
owners; εout and εin usually equal to 10% and 2% respectively. Here,
we assume that εout and εin are much extreme.

3We have extended our system model to code over two adjacent
OFDM symbols. Because of the slow fading assumption, this extension
does not change the results of the previous sections.
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Fig. 4. Effective throughput as function of resource sharing for
two users of the same type: (k1 = 250bits, ε1 = 10−5) and
(k2 = 250bits, ε2 = 10−5). Total available blocks N = 50 with
nc = 2× 12 subcarriers per block. Rayleigh fading µ = 0dB.

10 20 30 40 50

User 1 allocation (blocks)

100

200

300

400

(b
it
s
)

10 20 30 40 50

User 1 allocation (blocks)

100

200

300

400

(b
it
s
)

10 20 30 40 50

User 1 allocation (blocks)

100

200

300

400

(b
it
s
)

10 20 30 40 50

User 1 allocation (blocks)

100

200

300

400

(b
it
s
)

Fig. 5. Effective throughput as function of resource sharing for
two users of different types: (k1 = 150bits, ε1 = 10−5) and
(k2 = 250bits, ε2 = 10−5). Total available blocks N = 50 with
nc = 2× 12 subcarriers per block. Rayleigh fading µ = 0dB.

Reliability context. As Ultra Reliability is usually linked
with Low Latency constraint, we analyze the Reliability
Confidence level using the latest results on block error
rate in the Finite Blocklength regime. The analysis is
carried out for Rayleigh slow frequency block-fading
channels. We have first obtained lower and upper bounds
on the Reliability Confidence level that are tight at high
SNR, and then proposed their analytic approximations.

These approximations have been used to solve two
optimization problems. The first one consists in find-
ing the minimum codeword length required to meet a
given target block-error-rate with a given confidence and
the second one is characterizing the optimal resource
sharing between two users in a typical 5G New Radio
communication scenario. Solutions to both problems are
obtained very fast with our closed-form approximate

formulas, without the need of cumbersome Monte-Carlo
simulations. In addition, the approximate solutions have
been shown to accurately match the results predicted by
well-known bounds in the two applications considered
here.
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