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Abstract

Finding correspondences between structural entities decomposing images is of

high interest for computer vision applications. In particular, we analyze how to

accurately track superpixels - visual primitives generated by aggregating adja-

cent pixels sharing similar characteristics - over extended time periods relying on

unsupervised learning and temporal integration. A two-step video processing

pipeline dedicated to long-term superpixel tracking is proposed. First, unsu-

pervised learning-based superpixel matching provides correspondences between

consecutive and distant frames using new context-rich features extended from

greyscale to multi-channel and forward-backward consistency contraints. Re-

sulting elementary matches are then combined along multi-step paths running

through the whole sequence with various inter-frame distances. This produces a

large set of candidate long-term superpixel pairings upon which majority voting

is performed. Video object tracking experiments demonstrate the accuracy of

our elementary estimator against state-of-the-art methods and proves the abil-

ity of multi-step integration to provide accurate long-term superpixel matches

compared to usual direct and sequential integration.
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1. Introduction

Finding correspondences between multiple images is a fundamental problem

in computer vision tasks including scene segmentation [1], 3D reconstruction

[2], visual tracking [3], trajectory analysis [4] or video editing like 2D-to-3D

video conversion [5] and graphic elements propagation [6]. Established via local5

or global search, correspondences are usually either sparse through key feature

points [7] or for the dense pixel grid as with optical flow [8]. Patch-based ap-

proximate nearest neighbor (ANN) search methods such as PatchMatch (PM) [9]

and its extension to multi-resolution [10] are mainly followed to find correspon-

dences between patches. Alternatively, finding associations between structural10

entities decomposing images by grouping pixels enables a semi-dense coverage

of whole images while drastically reducing the cost of correspondence. Con-

trary to a regular decomposition of the image grid into patches which would

not offer enough consistent support regions for matching, superpixels - visual

primitives generated by aggregating adjacent pixels sharing similar characteris-15

tics into visually meaningful entities [11] - provide more reliable areas preserv-

ing both image geometry and object contours. Moreover, the hypothesis that

motion discontinuities are a subset of photometric contours is usually used to

preserve boundaries between objects exhibiting different motion. In particular,

these findings have motivated recent optical flow algorithms using image data20

and smoothness terms adapted to the superpixel level [12, 13]. Conversely, we

claim that image matching relying on superpixels could benefit from these ad-

vantages to offer more consistent associations than pixel or patch matches while

providing a better management of motion discontinuities. More precisely, this

paper focuses on how to accurately find correspondences between superpixels25

over extended time periods.

In this context, superpixel correspondences have been already employed for

visual tracking through superpixel-based discriminative appearance models [3]

or object-background confidence maps [14]. However, these works perform su-

perpixel matching based on comparisons of intrinsic superpixel features only,30
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without taking full advantage of neighborhood information. Conversely, [15]

exploits a structure of superpixel neighborhood called SuperPatch involved in

a superpixel PM framework. Superpixel neighborhood information greatly im-

proves correspondences since it alleviates some matching failures due to irregu-

lar decomposition of the same image content, not directly comparable between35

images. However, even with incorporated neighborhood information, directly

computing a matching distance between irregular structures can be tedious,

especially when images are divided into a large collection of superpixels.

A prior pixel-to-superpixel mapping can drive the matching at the superpixel

level to provide more precise correspondences. In this direction, [16, 17] uses40

random forests (RF) [18] to establish supervoxel correspondences between two

3D images in an unsupervised fashion. RF is trained on one image by using

supervoxel indexes as voxel-wise class labels and robust context-rich features to

describe the extended neighborhood. Applying RF on the other image yields a

voxel labelling which is then regularised using majority voting within supervoxel45

boundaries. First validated on medical image registration, we explore the use

of such learning-based superpixel matching for accurate superpixel matching

across long video sequences.

Despite recent advances related to optical flow integration [19, 6], the tem-

poral tracking of superpixels over long-term video sequences has received little50

attention in the literature. [20] uses a constrained graph where nodes denote

superpixels and edges encode spatial, temporal, and appearance constraints.

However, temporal constraints only model short-term smoothness between con-

secutive frames. Generative probabilistic model [21] and proximity-weighted

patch matching [22] employed to generate temporal superpixels only exploit55

short-term correspondences from one frame to the subsequent one. The same

finding arises in [3] whose tracker is conducted sequentially and therefore prone

to motion drift. Establishing long-term superpixel correspondences requires

to perform superpixel matching between consecutive and distant frames and

therefore to handle simultaneously small and large displacements. To address60

this challenge, we exploit the concept of multi-step integration introduced for
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long-term motion estimation using optical flow [6]. The idea is to generate a

large set of elementary displacement estimations performed between consecu-

tive frames or with larger inter-frame distances. Once combined, elementary

multi-step estimations result in a large set of long-term correspondences which65

are significative enough to be fused through statistical processing. We are not

aware of any studies that have recovered this concept for long-term superpixel

tracking while it could bring many benefits in this context. Indeed, it can al-

leviate matching errors during superpixel trajectory estimation since new steps

can give a chance to match with a correct location again compared to sequen-70

tial processing whose tracks may be lost. Moreover, statistical processing upon

large representative long-term superpixel candidates can solve the uncertainty

component present for matching tasks.

It must be reported that deep learning has become popular for object track-

ing relying on convolutional networks to learn discriminative features to encode75

the target appearance [23, 24] or recurrent networks trained with reinforcement

learning to learn how to predict object locations across videos [25]. Despite

their high performance, these methods only provide very sparse bounding box

tracking and do not describe how the boundaries of an irregular shaped object

evolves in time as expected through long-term superpixel tracking.80

In summary, two main contributions are proposed towards accurate long-

term superpixel tracking. First, unsupervised learning-based superpixel match-

ing is generalized and adapted from medical image processing [16, 17] to com-

puter vision in order to find associations along video sequences between con-

secutive and distant images decomposed into superpixels (Sect.2). The ap-85

proach is carried out using classifiers such as k-nearest neighbors (kNN) or RF

[18], incorporates new forward-backward consistency contraints and fully ex-

ploits dedicated context-rich features we extended from greyscale [26, 16, 17] to

multi-channel to incorporate neighborhood information on RGB frames. Sec-

ond, based on this learning-based matching approach used as an elementary90

displacement estimator, we propose a multi-step integration strategy for long-

term superpixel tracking (Sect.3). It combines multiple elementary superpixel
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matches obtained for some intermediate images following randomly selected

multi-step paths. This produces a large set of candidate long-term superpixel

pairings upon which a majority voting selection is performed. Based on object95

tracking experiments extending a preliminary study presented in [27], Sect.4

assesses the accuracy of the proposed elementary estimator against state-of-

the-art methods and proves the ability of multi-step integration to provide an

efficient long-term superpixel tracking compared to both standard direct and

sequential integration. We end with conclusions and perspectives in Sect.5.100

2. Superpixel matching with unsupervised learning

Let V be a video sequence of RGB images. In this section, unsupervised

learning-based superpixel matching is addressed between two consecutive or

distant images If and Is of V. Each image Iq : Ωq ⊂ N2 → N3 associates a RGB

color vector Iq(x q) to each pixel pq located at x q ∈ Ωq with q ∈ {f, s}1.105

2.1. Problem formulation

Let F = {f i}i∈{1,...,|F|} and S = {sj}j∈{1,...,|S|} be respectively the set

of |F| and |S| connected superpixels partitioning If and Is. The superpixel

decomposition can be performed using any superpixel algorithm [11] such as

Simple Linear Iterative Clustering (SLIC) [28] which aggregates neighboring110

pixels pq based on spatial and intensity proximity criteria. Forward superpixel

matching from If to Is (f < s) consists in automatically learning a matching

function hf,s that maps each superpixel f i ∈ F of If to a given superpixel

sj ∈ S of Is [16] such that:

∀i ∈ {1, . . . , |F|},∃j ∈ {1, . . . , |S|} | hf,s(f i) = sj (1)

Backward matching from Is to If can be similarly considered by estimating hs,f115

mapping each superpixel sj ∈ S to a given superpixel f i ∈ F . In what follows,

learning-based superpixel matching is described in forward from If to Is.

1stands for first and second
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source If SLIC [28] pixel-wise prediction majority voting

source Is SLIC [28] pixel-wise training kNN or RF [18]

Figure 1: Superpixel matching between If and Is using unsupervised learning applied with

SLIC [28] superpixel indexes as label entities followed by majority voting following [16]. This

example is produced for image pair {I50, I70} of the lapa sequence [29] using RF [18].

2.2. Overall strategy

Instead of relying on nearest neighbor search at the superpixel level through

superpixel feature comparisons [14, 15], which is prone to ambiguity due to pos-120

sible severe overlaps in feature space, we explore the use of pixel-wise k-nearest

neighbors (kNN) or random forests (RF) [18] to establish correspondences be-

tween superpixels over-segmenting If and Is, as formulated in Eq.1. Usually

employed with success for multi-class classification or regression, we show that

such classifiers can also be used with profit for accurate superpixel correspon-125

dences. The overall learning-based superpixel matching strategy illustrated

Fig.1 is carried out in an unsupervised manner, i.e. without any previously

collected training data. To give a powerful representation of the global context,

RF or kNN is considered with new pixel-wise context-rich features extended

from greyscale [26, 16, 17] to multi-channel RGB and described in Sect.2.3.130

The key idea is to perform training on the target image (Is) by using super-

pixel indexes as pixel-wise class labels and testing on the first image (If ) to get

a pixel-to-superpixel mapping, as introduced in [16]. In particular, the classifier

aims at assigning a superpixel sj ∈ S to each pixel pf ∈ Ωf . A training set

is thus built by considering all pixels ps of Ωs with their associated superpixel135
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Figure 2: Pixel-wise context-rich multi-channel features provide a description of the extended

spatial context (see Sect.2.3 for further details).

index, i.e. the index of the superpixel sj they belong to. Once trained, the

classifier is applied to If to predict for each pf the index of a superpixel of S.

This pixel-to-superpixel mapping is addressed in detail in Sect.2.4.

Mapping results are further regularized following superpixel boundaries to

reach robust superpixel matches. Within each superpixel f i of If , the most140

represented superpixel index among all pixel-wise predictions indicates the best

superpixel match hf,s(f i). This final superpixel matching step is detailed in

Sect.2.5 with new foward-backward (FW-BW) consistency constraints.

2.3. Context-rich multi-channel features

Extracting contextual information from near size-variable patches is key to145

discriminate pixels towards robust pixel-to-superpixel mapping. Let Īwq (pq, c)

be the average intensity on a local box of size w centered on pq for channel

c ∈ {r, g, b}. Pixel-wise context-rich features θ(pq) = {θm(pq)}m∈{0,...,Ka−1}

assigned to pixels pq are extended from greyscale [26, 16, 17] to multi-channel

as follows:150

θm(pq) = Īwp (pq + ∆r, c)− β × Īw
′

p (pq + ∆r′ , c) (2)

where displacements ∆{r,r′} are randomly defined starting from pq in a disc

of maximal radius Φ (Fig.2). β ∈ {0, 1} is a binary parameter which focuses
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whether on intensity differences between two boxes randomly located in the

extended neighborhood (β = 1) or on the value obtained from one single box

only (β = 0). Color intensities around pq are included in the feature vector θ(pq)155

by forcing ∆r = β = 0 for all possible pre-defined box sizes w and channels c.

By randomly generating many different box sizes w and offsets ∆r, we obtain

a large set of Ka features describing the extended spatial context for all color

channels c. Parameters {w,w′,∆r,∆
′
r, β, c} are randomly generated once and

remain similar whatever the image If or Is under consideration.160

2.4. Pixel-to-superpixel mapping

Pixel-to-superpixel mapping relies on machine learning to compute pixel-

to-superpixel mapping probabilities denoted as p(hf,s(pf )=sn) for each pixel

pf ∈ Ωf with respect to all superpixels sn ∈ S with n ∈ {1, . . . , |S|}.

The procedure with random forests (RF) [18] is conducted as follows. The165

forest is formed by T uncorrelated trees made of both internal nodes splitting

data according to binary tests Ψ and leaf nodes which reach all together a final

data partition. At each internal node, the split sends pixels pq to left and right

child nodes during training (q=f) and prediction (q=s). The associated binary

test Ψ focuses on a random subset θ̂(pq) of context-rich multi-channel visual170

features θ(pq) assigned to pq (Sect.2.3) and divides the input pixel set based

on the following split rule:

Ψ(pq, θ(pq)) =

 true, if θ̂(pq) > τ

false, otherwise
(3)

where θ̂(pq) is compared to a threshold τ and q ∈ {f, s}.

Internal node parameters ({τ, θ̂(pq)}) are optimized via information gain175

maximization with respect to the training dataset L = {ps, c(sj)} combining

pixels ps belonging to sj with their associated superpixel index c(sj) = j with

j∈{1, . . . , |S|}. Any additional training data is required additionally to L which

makes this strategy unsupervised. After optimization, each leaf node lt of the tth
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tree receives a partition Llt of L and produces the class probability distribution180

plt(c(sj)|L) for all superpixels sj .

To predict the corresponding superpixel index c(sn) of a given pixel pf∈ Ωf

with associated visual features θ(pf ) during testing, pf is injected into each

optimized tree and finally reaches a leaf node lt per tree following the successive

split rules (Eq.3). The pixel-to-superpixel mapping probability p(hf,s(pf ) = sn)185

denoting the probability that sn is assigned to pf is obtained for each sn by:

p(hf,s(pf ) = sn) =
1

T

T∑
t=1

plt(c(sn)|L) =
1

T

T∑
t=1

|{ps, c(sl)} ∈ Llt | l = n |
|Llt |

(4)

Contrary to RF, the kNN classifier simply stores instances of training data

instead of building a general internal model. Pixel-to-superpixel mapping prob-190

abilities p(hf,s(pf )=sn) are computed by looking at the class (superpixel index)

distribution among the k nearest neighbors ps of each pixel pf in feature space.

Nearest neighbors are estimated using Euclidean distance on context-rich fea-

tures assigned to pixels pq with q ∈ {f, s}.

2.5. Superpixel-to-superpixel matching195

Once pixel-to-superpixel mapping probabilities p(hf,s(pf ) = sn) are com-

puted for each superpixel sn ∈ S using context-rich features (Sect.2.3) involved

in RF or kNN (Sect.2.4), two steps are required to get final superpixel pairings.

First, the final pixel-to-superpixel mapping for each pf of If can be found using:

200

hf,s(pf ) = sj = arg max
sn∈S

p(hf,s(pf ) = sn) (5)

Second, majority voting among all pixels of a given superpixel f i ∈ F can

be performed by selecting the most represented superpixel index. The final

matching hf,s(f i) = sj is defined such that c(sj) satisfies:205

c(sj) = arg max hist({c(hf,s(pf )) | pf ∈ f i}) (6)
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An alternative consists in averaging the pixel-to-superpixel mapping probabil-

ities at the superpixel level instead of making hard decision for each pf as

performed in Eq.5:

p(hf,s(f i) = sn) =
1

|f i|
∑

pf∈ f i

p(hf,s(pf ) = sn) (7)

210

We keep at this point all possible outcomes between candidate matches. De-

cisions are postponed to the superpixel level by finding the superpixel sj ∈ S

which maximizes p(hf,s(f i) = sn):

hf,s(f i) = sj = arg max
sn∈S

p(hf,s(f i) = sn) (8)

215 Forward-backward consistency can be enforced in the context where two

mapping functions are learned: hf,s (resp. hs,f ) that maps each supervoxel

f i ∈ F (sj ∈ S) to a given sj (f i) belonging to S (F) in forward (backward).

Thus, we extend Eq.8 with a new consistency constraint that guides the mutual220

matching between f i and sj :

hf,s(f i) = arg max
sn∈S

p(hf,s(f i) = sn)× p(hs,f (sn) = f i) (9)

The whole unsupervised learning-based strategy described above can be per-225

formed all along the video V to match superpixels decomposing consecutive or

distant images, both in forward and backward directions.

3. Long-term superpixel tracking using multi-step integration

We address at this stage long-term superpixel tracking for sequence V com-

posed of N + 1 RGB frames In : Ωn ⊂ N2 → N3 using the learning-based230

superpixel matching strategy, described Sect.2 for a given pair of consecutive

or distant frames, as elementary estimator. Each frame In is decomposed into

a set of superpixels with the same amount of visual primitives for each. One

particular frame (usually the first one) of V is defined as the reference frame

and denoted Iref . In this context, we aim at finding correspondences between235

superpixels over-segmenting Iref and superpixels defined in frames In with
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n ∈ {0, . . . , N} 6= ref . Let F = {f i}i∈{1,...,|F|} and S = {sj}j∈{1,...,|S|} be

the set of |F| and |S| connected superpixels partitioning Iref and In.

Both superpixel trajectory estimation between the reference frame and all

the images of the sequence and superpixel matching to match each image to the240

reference frame can be considered, as in [19, 6]. From-the-reference estimation is

useful for information pushing from superpixels of Iref whereas to-the-reference

estimation allows information propagation over superpixels of each frame In by

pulling it from Iref . The description below focuses on a given pair {Iref , In}

where In is located far away from Iref . Correspondences for the whole sequence245

are obtained by processing each pair {Iref , In} independently ∀n 6=ref .

Starting from learning-based superpixel matching (Sect.2) as elementary mo-

tion estimator, two temporal integration schemes can be considered at first

glance to find href,n mapping each superpixel f i∈F to a given superpixel sj of

S such that href,n(f i) = sj . First, sequential integration can be employed pass-250

ing through all intermediate frames, similarly to dense point tracking algorithms

[30]. This step-by-step strategy can gradually apprehend appearance changes

and large displacements but may lead to large error accumulation, resulting in a

substantial drift over extended time periods. This drawback is further enhanced

when using superpixels since superpixel decompositions across the sequence may255

result in an irregular partitioning of the image content. Second, to avoid error

accumulations, direct matching [31] can be applied between superpixels of Iref

and In, exactly as in Sect.2. However, this ignores that V consists of inter-

related images with redundant and smoothly evolving content, which makes

large displacement and aspect changes challenging to handle.260

Issues related to both sequential and direct superpixel tracking could be

partially compensated by complexifying the superpixel matching models and

criteria, but an uncertainty component remains. This argues in favor of a sta-

tistical processing (Sect.3.2) which takes into account a large set of candidate

long-term superpixel matches obtained using multi-step combination (Sect.3.1)265

of elementary superpixel pairings previously established through unsupervised

learning following Sect.2.
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Figure 3: Generation of step sequences from I0 to I3 with steps 1, 2, and 3 by creating a tree

structure: Γ0,3 = {{1, 1, 1}, {1, 2}, {2, 1}, {3}}.

3.1. Multi-step integration of elementary matches

Multi-step integration aims at producing a large set of candidate long-

term superpixel pairings between Iref and In using intermediate superpixel270

correspondences to form a significative set of samples upon which statistical

selection (Sect.3.2) is relevant. Formely introduced for optical flow integra-

tion [6], we show that this heuristic can be extended towards accurate long-

term superpixel tracking. As inputs, we take a set of superpixel match fields

pre-estimated from each frame of V including Iref . These matches are com-275

puted between consecutive frames or with larger inter-frame distances [6] using

learning-based superpixel matching (Sect.2). Let An = {α1, α2, . . . , αQn
} ⊂

{1, . . . , N−n} be the set of Qn possible steps at instant n which means that

{hn,n+α1 , hn,n+α2 , . . . , hn,n+αQn
} has been previously learned using kNN or RF.

Thus, for each step αq ∈ An, we have a superpixel match in In+αq
for each su-280

perpixel of In through the mapping function hn,n+αq
, and this for each frame.

The starting point of multi-step integration consists in initially generating all

possible step sequences (Fig.3), i.e. combinations of steps, to join In from Iref .

Then, each generated step sequence defines a multi-step path (Fig.4) linking

each superpixel f i of Iref to a superpixel sj in In passing through superpixels285

of some intermediate frames.

Let Γref,n = {γ0,γ1, . . . ,γK−1} be the set of the K possible step sequences

12



Figure 4: Generation of multi-step paths corresponding to step sequences {{1, 2}, {2, 1}} ⊂

Γ0,3 from I0 to I3.

γk between Iref and In. A step sequence γk = {αk1 , αk2 , . . . , αkKγk
} is defined by

a set of Kγk
steps which once cascaded join In from Iref . Γref,n is computed

by building a tree structure (Fig.3) where each node corresponds to a field of290

superpixel matches assigned to a given frame for a given step value (node value).

Going from the root node to leaf nodes of this tree structure gives the possible

step sequences which are stacked into Γref,n. For instance, the tree displayed

in Fig.3 indicates the 4 possible step sequences from I0 to I3 with steps 1, 2,

and 3: Γ0,3 = {{1, 1, 1}, {1, 2}, {2, 1}, {3}}.295

Once all the K possible step sequences γk between Iref and In are generated,

the corresponding multi-step paths are constructed (Fig.4). For step sequence

γk = {αk1 , αk2 , . . . , αkKγk
} ∈ Γref,n composed of Kγk

steps, superpixel matching

between Iref and In is performed via:

href,n(f i)|γk
= h

ref+
∑Kγk

−1

p=1 αk
p,n
◦ . . . ◦

href+αk
1 ,ref+αk

1+αk
2
◦ href,ref+αk

1
(f i) (10)

with ref +
∑Kγk
p=1 α

k
p = n. Once all the steps αkj ∈ γk have been run through,300

one gets href,n(f i)|γk
, the superpixel in In corresponding to f i ∈ Iref obtained

with step sequence γk. For γk = {1, 2} ∈ Γ0,3 for instance (Fig.4), we have:

h0,3(f i)|{1,2} = h1,3

(
h0,1(f i)

)
= h1,3 ◦ h0,1(f i) (11)

A large set of candidate superpixels in In is finally reached by considering

all the step sequences of Γref,n and this for each superpixel f i defined in Iref .
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Thus, to each f i is associated a large set of K candidate superpixels in In defined305

as Tref,n(f i) = {href,n(f i)|γk
}k∈{0,1,...,K}.

Multi-step integration has been previously presented as an exhaustive can-

didate generation process. In practice, selecting only a subset of all possible

step sequences and therefore associated multi-step paths is required to be able

to build and keep in memory the multi-step integration stage outputs growing310

exponentially [6]. For instance, 5877241 multi-step paths can be generated for a

distance of 30 frames using steps 1, 2, 5 and 10. Up to a few thousands can be

actually considered to avoid computational and memory issues. The selection

of L step sequences Γ∗ref,n = {γ0,γ1, . . . ,γL−1} among the K possible step

sequences Γref,n is therefore necessary, with L << K.315

Two complexity reduction rules are taken from [6]. We start by remov-

ing the largest step sequences in terms of number of constituting steps. A

threshold of Kmax number of steps is thus set and only step sequences γk =

{αk1 , αk2 , . . . , αkKγk
} for which Kγk

≤ Kmax are kept. Indeed, too many steps

may induce an important drift due to multiple intermediates. Then, random320

selection of L step sequences among remaining ones is performed.

3.2. Long-term match selection

Once step selection is performed, we obtain for each superpixel f i of Iref a

set of L candidate superpixels Tref,n(f i) = {href,n(f i)|γl∈Γ∗ref,n
} defined in In

with l ∈ {0, ..., L− 1}. The final candidate selection is performed via majority325

voting among Tref,n(f i), i.e. the final matching href,n(f i) =sj is defined such

that c(sj) satisfies:

c(sj) = arg max hist({c(href,n(f i)|γl
) | γl ∈ Γ∗ref,n}) (12)

Thank to the random step sequence selection (Sect.3.1), the set of generated

superpixel candidates is both significative and uncorrelated enough to assume

that the most represented superpixel provides an accurate superpixel match.330

Forward-backward consistency can be also considered in this context by pro-

viding to-the-reference multi-step paths additionally to from-the-reference ones.
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We thus incorporate in Tref,n(f i) superpixels sj such that hn,ref (sj)|γl∈Γ∗n,ref
=

f i where Γ∗n,ref is the set of L selected step sequences in the to-the-reference

direction. The resulting additional superpixel candidates are referred as reverse335

candidates in opposition to direct ones, i.e. those which were formerly stacked

into Tref,n(f i). To further guide mutual matching between f i and sj , one can

apply majority voting (Eq.12) only on superpixel candidates generated in both

from/to-the-reference directions.

Superpixel correspondences with respect to Iref are provided for the whole340

sequence relying on multi-step integration applied independently for each pair

{Iref , In} ∀n 6= ref and based on unsupervised learning-based superpixel match-

ing as an elementary estimator.

4. Application to video object tracking

Different aspects of the proposed methodology are evaluated through video345

object tracking experiments. First, the ability of unsupervised learning-based

superpixel matching to provide a reliable accurate elementary estimator between

consecutive and distant frames is proven with comparisons to state-of-the-art

methods (Sect.4.1). Second, the capacity of the proposed multi-step integration

stage to perform robust long-term superpixel tracking is shown using both kNN350

and RF-based multi-step elementary superpixel matches (Sect.4.2). Moreover,

multi-step integration results are assessed with respect to straightforward di-

rect and sequential integration outputs. Third, multi-step integration is further

analyzed by studying the impact of different candidate generation strategies in

terms of tracking accuracy (Sect.4.3).355

To provide a generic evaluation while ensuring content diversity and rep-

resentativity, video object tracking is performed over 10 sequences (Tab.1) ex-

tracted from 4 databases: bag, fish3 (denoted fsh3) and octopus (octo) from

the Visual Object Tracking (VOT) database [32], sleep1 (sle1) with albedo

from MPI Sintel [33], lapa from the laparoscopy dataset [29] as well as swan,360

bear, camel (caml), cows and flamingo (flam) from the Densely Annotated
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img size obj NR LD BC DB SV PO TS IC

bag [32] 101 480×360 1 x x x x

fsh3 [32] 101 480×270 1 x x x

octo [32] 51 640×360 1 x x x x

lapa [29] 81 364×270 1 x x x

sle1 [33] 50 512×218 3 x x x

swan [34] 50 427×240 1 x x x

bear [34] 82 427×240 1 x x x x x x

caml [34] 90 427×240 1 x x x x x x x

cows [34] 104 427×240 1 x x x x x x

flam [34] 80 427×240 1 x x x x x x

Table 1: Overview of sequences extracted from [32, 29, 33, 34] and used for object tracking

experiments with associated sequence length, tracked object number and video attributes

including complex non-rigid motion (NR), large displacement (LD), background clutter (BC),

dynamic background (DB), scale variations (SV), partial occlusions (PO), thin structures (TS),

illuminations changes and shadows (IC).

VIdeo Segmentation (DAVIS) database [34]. As detailed in Tab.1, these se-

quences cover altogether many challenging situations such as complex non-rigid

motion (NR), large displacement (LD), background clutter (BC), i.e. color similar-

ities with background or between objects, dynamic background (DB) including365

moving background objects and camera viewpoint changes, scale variations (SV),

partial occlusions (PO), thin structures (TS), illuminations changes and shadows

(IC). Image sizes vary from 364 × 270 to 640 × 360 (Tab.1). Except for lapa

whose ground-truth (GT) masks have been created from our own, all sequences

were provided with associated GT masks indicating exact object delineations.370

Video object tracking, also called semi-supervised video object segmentation

task, consists in estimating for the whole sequence the exact location of a se-

mantically meaningful free-shape region of interest (ROI) manually defined in

one single image referred as reference frame. Once produced, tracking results

are assessed for each pair {Iref , In} with n 6= ref based on three complemen-375

tary measures. First, Dice scores [35] measure the region-based segmentation

similarity between estimated X and GT Y masks by computing 2|X∩Y |
|X|+|Y | . Then,

contour-based precision Pc and recall Rc between estimated and GT masks can

be estimated relying on bipartite graph matching to be robust to small inac-
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curacies [36]. In practice, we focus on the F-measure combining precision and380

recall using F = 2PcRc

Pc+Rc
. Bi-partite matching is approximated using morphology

operators, as in [34]. Finally, consistency-based assessment is performed relying

on the percentage of pixels of Iref located inside the ROI and whose belonging

superpixel f ref is consistent in terms of forward-backward binary consistency:
385

hn,ref (href,n(f ref )) = f ref (13)

In terms of computation time, performing RF-based matching followed by

multi-step integration using steps {1, 2, 5, 10, 20} on a sequence of 640×360

frames such as octo with 500 SLIC [28] superpixels takes approximately 6 min-390

utes per frame using a 3.1GHz Intel Xeon CPU processor and Python imple-

mentation, without extensive code optimization. Processing time is reduced

about 17% when relying on kNN for unsupervised learning.

4.1. Elementary superpixel matching

Our first experiments consist in evaluating the proposed unsupervised learning-395

based superpixel matching (Sect.2) between consecutive and distant frames

against state-of-the-art methods. In this direction, ROI tracking is performed

through direct integration (DIR) in the to-the-reference direction, i.e. relying

on direct processing of image pairs {In, Iref} without any sequential or multi-

step combinations of pre-estimated superpixel matches. Unsupervised learning-400

based matching using both kNN and RF classifiers is compared to three other

methodologies: superpixel-to-superpixel matching using superpixel-wise average

color (RGBm) and color histogram (RGBh) features, PatchMatch (PM) [9], as

well as optical flow through Farnebäck [8] and SIFT Flow [37]. Unsupervised

learning-based matching works with |F| = |S| = 500 SLIC superpixels per frame405

with the same compactness parameter (i.e. same weighting between spatial and

intensity proximity for each frame) and employs Ka = 80 context-rich multi-

channel features computed with Φ=40 as maximal radius and w ∈ {3, 5, 7} as

possible box sizes (Sect.2.4). RF is made of T =100 trees whereas kNN relies

on 5 neighbors for queries. RGBm and RGBh use respectively average RGB410
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colors and RGB histograms (using 10 bins) as superpixel-wise features to give

correspondences in Iref for each superpixel of In in a nearest neighbor man-

ner. As for unsupervised learning-based matching, RGBm and RGBh exploit

images decomposed into 500 SLIC superpixels. PM [9] is looking for the best

patch matches using 9×9 windows with 6 iterations including both propagation415

and random refinement steps. Farnebäck [8] and SIFT Flow [37] estimators are

used using by-default parameters. Learning-based and superpixel-to-superpixel

matching are performed once a groundtruth label is assigned to each superpixel

of Iref to indicate its belonging to the ROI to be tracked. In practice, 50% of the

constituting pixels must be included into the ROI to label a superpixel as part420

of the object in Iref . Label propagation can be then easily done at the super-

pixel level once to-the-reference superpixel pairings are obtained. Conversely,

PM and optical flow estimators use dense to-the-reference fields to propagate

labels at the pixel level from Iref to the whole sequence.

Dice and F-measure scores temporally averaged across each of the previously425

described sequences are given Tab.2 for each method. Bold and underline re-

sults indicate first and second best scores. Results indicate a good matching

accuracy reached using the proposed unsupervised learning-based strategy for

both consecutive and distant frames. On average, RF-based superpixel pairings

provide the best direct tracking results with Dice and F-measure of 86.9 and430

80.3, followed by k-NN-based results which reach 74.7 and 70.3. Both meth-

ods are significantly superior to the other existing approaches. Averaged Dice

(F-measure) goes down to 67.6 (57.8) and 61.6 (53.0) for RGBh and RGBm

respectively. Despite fairly good scores for octo, caml, cows and flam, PM and

optical flow methods do not globally outperform unsupervised learning-based435

and superpixel-to-superpixel matching with averaged Dice (F-measure) of 57.9

(53.2), 54.2 (48.4) and 51.9 (46.8) for PM, Farnebäck and SIFT Flow.

These findings are illustrated visually Fig.5 for the pair {I1, I34} of swan.

Red and green boundaries denote propagated and GT ROI location. We can

notice that PM, Farnebäck and SIFT Flow under-estimate the area covered440

by the swan, especially for the neck and near the water. RGBm, RGBh as
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Dice F-measure

spx matching
PM[9]

optical flow proposed DIR spx matching
PM[9]

optical flow proposed DIR

RGBm RGBh Far[8] SF[37] kNN RF RGBm RGBh Far[8] SF[37] kNN RF

bag 67.1 87.5 11.6 11.8 11.0 96.9 92.8 59.3 82.6 10.7 10.1 10.6 97.8 89.0

fsh3 89.8 89.7 23.8 16.7 15.2 64.8 89.4 91.9 91.4 27.4 21.4 18.7 67.3 81.5

octo 25.6 47.6 98.6 96.5 96.4 84.8 85.5 17.2 32.1 95.2 92.9 92.9 75.6 74.9

lapa 65.8 67.7 70.4 61.1 48.5 89.2 87.9 57.1 57.7 53.0 51.2 51.5 86.1 85.3

sl1.1 84.5 84.2 41.7 35.2 32.5 82.9 94.9 81.2 83.3 53.1 42.2 43.1 81.8 94.4

sl1.2 24.5 51.2 24.3 13.4 11.8 82.0 89.4 21.6 44.6 50.4 34.1 24.4 82.4 90.3

sl1.3 38.5 51.2 13.5 7.95 7.75 66.7 88.3 39.5 49.1 24.7 12.1 11.4 72.9 77.5

swan 91.0 89.2 78.5 84.9 83.9 90.5 91.3 87.4 83.9 62.6 70.7 69.2 85.7 88.0

bear 81.5 73.8 79.7 85.6 84.0 84.3 89.1 57.7 46.5 56.3 64.5 65.9 65.2 76.3

camel 58.5 49.3 85.2 85.2 80.5 67.5 70.3 45.6 38.2 72.4 64.3 67.2 56.4 59.3

cows 64.2 67.5 89.6 89.6 84.4 16.8 87.1 32.2 36.9 77.3 68.3 60.4 15.5 69.8

flam 48.2 52.4 77.5 77.2 66.3 70.0 76.2 45.6 46.7 55.6 48.8 45.9 56.3 67.2

avg 61.6 67.6 57.9 54.2 51.9 74.7 86.9 53.0 57.8 53.2 48.4 46.8 70.3 80.3

Table 2: Dice and F-measure scores for ROI tracking across 10 sequences using direct integra-

tion (DIR), i.e. direct processing of image pairs {Iref , In}. Four methodologies are compared:

superpixel-to-superpixel matching using superpixel-wise average color (RGBm) and color his-

togram (RGBh) features, PatchMatch (PM) [9], optical flow through Farnebäck [8] and SIFT

Flow [37] as well as the proposed unsupervised learning-based superpixel matching using

kNN/RF classifiers. Bold and underline results indicate first and second best scores.
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I1 SLIC, I1 I34 SLIC, I34

GT assignment PM [9] Far [8] SF [37]

RGBm RGBh kNN - DIR RF - DIR

kNN - SEQ kNN - MSI RF - SEQ RF - MSI

training RF - DIR pred. RF - SEQ pred. RF - MSI pred.

Figure 5: ROI propagation for swan ({I1, I34}) [34] with DIR, SEQ and MSI (steps

{1, 2, 5, 10, 20, 30}) integrations using kNN and RF. Results are compared with: superpixel-

to-superpixel matching with average color (RGBm) and color histogram (RGBh) features,

PatchMatch (PM) [9], optical flow through Farnebäck (Far) [8] and SIFT Flow (SF) [37].

Blue boundaries in I1 indicate superpixel labelling resulting from GT assignment. Green and

red boundaries correspond to groundtruth (GT) and estimated tracking results. The last raw

displays training (I1) and prediction (I34) masks resulting from DIR, SEQ and MSI integrations

of RF-based elementary pairings.
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well as RF and kNN-based direct (DIR) superpixel pairings provide clearly bet-

ter contours despite the tendency to propagate the ROI outside the swan area

due to shadows and color similarities with background. One drawback with

superpixel-based methods is the lack of boundary adherence which may not445

suit perfectly the object to be tracked. This aspect is revealed for I1 by the

blue boundaries which indicate the superpixel labelling resulting from GT as-

signment. However, Tab.2 demonstrates that this limitation is compensated

by robust superpixel matching heuristics compared to straithforward pixel-wise

matching and mask propagation which rely on a regular decomposition of the450

image grid without enough context considerations. Finally, Fig.5 shows that

a more accurate propagation can be achieved with multi-step integration of

learning-based superpixel pairings, especially with RF. It tends to indicate the

ability of unsupervised learning-based superpixel matching to provide a reliable

and accurate enough elementary estimator towards efficient long-term multi-step455

matching and tracking. The performance achieved with multi-step integration

is more deeply demonstrated in the next section.

4.2. Long-term superpixel tracking

Long-term ROI tracking resulting from direct (DIR), sequential (SEQ) and

multi-step (MSI) integrations are compared based on unsupervised learning-460

based SLIC [28] superpixel matching whose accuracy against state-of-the-art

methods has been demonstrated in Sect.4.1 with both kNN and RF classifiers.

MSI is applied with L=200 maximal step sequences per image pairs. Only step

sequences whose length is less than or equal toKmax = 7 are kept to prevent from

motion drift (Sect.3.1). kNN and RF-based elementary multi-step superpixel465

matches are obtained with steps {1, 2, 5, 10, 20} for octo, swan and sle1 and

{1, 2, 5, 10, 20, 30, 50} for longer sequences (fsh3, bag, lapa, bear, caml, cows

and flam). Context-rich features are estimated using the same parameters as

in Sect.4.1. Majority voting (Eq.12) focuses only on superpixel candidates gen-

erated in both to/from-the-reference directions to improve forward-backward470

consistency (see Sect.4.3 for further details).
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Dice F-measure consistency

kNN RF kNN RF kNN RF

DIR SEQ MSI DIR SEQ MSI DIR SEQ MSI DIR SEQ MSI DIR SEQ MSI DIR SEQ MSI

bag 96.9 97.7 97.7 92.8 74.9 92.9 97.8 99.7 99.4 89.0 65.9 88.3 39.2 12.1 32.1 30.2 12.2 27.8

fsh3 64.8 90.5 85.7 89.4 91.1 92.0 67.3 92.6 81.5 91.8 93.9 95.4 56,5 37,6 74,3 69.5 38.8 58.7

octo 84.8 91.3 93.0 85.5 91.3 92.8 75.6 83.6 86.3 74.9 83.6 86.0 84,6 67,5 76,6 82.9 67,1 75,7

lapa 89.2 86.5 92.8 87.9 88.3 92.8 86.1 86.2 95.0 85.3 86.8 94.8 96.1 68.9 96.8 90.2 64.6 91.5

sl1.1 82.9 95.3 95.6 94.9 95.5 95.9 81.8 93.2 94.8 94.4 94.0 95.5 89,2 63,4 96,8 94,5 76,1 93,4

sl1.2 82.0 80.9 90.3 89.4 80.5 90.9 82.4 77.9 93.0 90.3 73.1 93.9 76.0 62,4 91,6 84,9 61,6 91,2

sl1.3 66.7 92.4 92.2 88.3 92.4 94.2 72.9 76.7 78.1 77.5 76.7 81.6 86.7 78.1 95.0 87.7 75.6 100

swan 90.5 85.0 93.5 91.3 86.9 93.4 85.7 73.9 93.6 88.0 78.4 93.8 86.1 57.7 83.0 82.3 59.3 77.7

bear 84.3 87.8 87.7 89.1 87.0 92.5 65.2 68.2 72.2 76.3 68.9 82.1 65.6 61.2 68.5 62.7 62.1 67.2

camel 67.5 76.6 76.9 70.3 77.7 79.6 56.4 64.7 67.2 59.3 63.3 69.1 58.7 41.5 51.8 63.8 42.3 54.7

cows 16.8 80.1 87.3 87.1 79.1 89.1 15.5 59.6 66.8 69.8 61.4 74.1 15.5 39.6 68.5 75.8 39.3 67.6

flam 70.0 63.5 76.7 76.2 66.5 80.8 56.3 62.5 67.1 67.2 62.8 71.9 55.4 34.9 63.4 43.0 39.7 55.0

avg 74.7 85.6 89.1 86.9 84.3 90.6 70.3 78.2 82.9 80.3 75.7 85.5 67.5 52.1 74.9 72.3 53.2 71.7

Table 3: Dice, F-measure and consistency scores for ROI tracking across 10 sequences. We

compare direct (DIR), sequential (SEQ) and multi-step (MSI) integration based on unsupervised

learning-based superpixel matching using kNN and RF. Bold results indicate the best perfor-

mance between DIR, SEQ and MSI. Underline scores highlight best results between kNN and

RF-based methods.
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Tab.3 presents temporally averaged metrics (Dice, F-measure and consis-

tency scores) obtained by DIR, SEQ and MSI across all sequences using kNN and

RF. Except for consistency scores when relying on RF, Tab.3 confirms that MSI

is the best integration strategy towards long-term superpixel tracking compared475

to DIR and SEQ. For instance, RF and kNN-based MSI reach the highest Dice

scores with 90.6 and 89.1 in comparison to 84.3 (86.9) and 85.6 (74.7) obtained

with RF and kNN-based SEQ (DIR). Second and third positions in terms of Dice

and F-measure vary depending on the classifier. SEQ outperforms DIR for kNN

whereas RF exhibits the opposite behavior. Except for MSI in terms of consis-480

tency and SEQ for F-measure, another main finding is that RF-based elementary

matches usually make better long-term tracking than kNN-based pairings. This

suggests that RF is more able to deal with a large amount of classes in this

context. Despite a slightly poorer management of context-rich features, kNN

remains an interesting and faster alternative, depending on expected tracking485

quality requirements. Since the balance between processing time and tracking

quality is guided by the application, we can imagine that k-NN could be chosen

against RF in some contexts.

Temporal evolutions of Dice and F-measure scores are displayed Fig.6 along

lapa, sle1.2 (sle1 for object 2), octo and swan sequences with both classifiers.490

As already confirmed, best tracking results are reached with MSI compared to

DIR and SEQ, especially for distant pairs. Contrary to SEQ whose performance

decreases across sequences due to error accumulations (lapa and swan espe-

cially), multi-step estimations involved in MSI allow to fix uncorrect superpixel

tracks as we can notice for sle1.2 from frame I20. Moreover, DIR is not prone to495

motion drift as SEQ but direct matching becomes tedious when inter-frame dis-

tances increase as shown for octo starting from I109. Finally, it can be noticed

that the temporal behavior remains almost the same regardless of the classifier.

Finally, quantitative results are illustrated by series of ROI selection and

visual tracking examples for several pairs of lapa (Fig.7), sle1 (Fig.8), bag,500

fsh3, and octo (Fig.9) sequences. Fig.7 shows that kNN-based MSI provides a

very good delineation of the surgical tool for all image pairs, which suggests that
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Figure 6: Temporal evolution of Dice (left) and F-measure (right) scores during ROI tracking

across lapa [29], sle1.2 [33], octo [32] and swan [34] sequences. We compare direct (DIR),

sequential (SEQ) and multi-step (MSI) integration based on kNN and RF-based elementary

pairings.
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Figure 7: ROI selection and tracking across lapa sequence [29] from I50 to I130. We com-

pare direct (DIR), sequential (SEQ) and multi-step (MSI, steps {1, 2, 5, 10, 20, 30, 50}) integra-

tion (Sect.3) of superpixel matches obtained through unsupervised learning-based superpixel

matching (Sect.2) with kNN and RF [18]. Superpixel decompositions are obtained via SLIC

[28]. Blue boundaries (I50) indicate superpixel labelling resulting from GT assignment. Green

and red boundaries correspond resp. groundtruth (GT) and estimated tracking results.
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Figure 8: ROI selections and tracking across sle1 sequence [33] from I1 to I50. We compare

direct (DIR), sequential (SEQ) and multi-step (MSI, steps {1, 2, 5, 10, 20}) integration based on

unsupervised learning-based superpixel matching with kNN and RF.
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Figure 9: ROI selection and tracking across bag (resp. fsh3, octo) sequences [32] for segments

[I1, I101] ([I301, I401], [I70, I120]). We evaluate DIR, SEQ and MSI (steps {1, 2, 5, 10, 20, 30, 50}

for bag and fsh3, {1, 2, 5, 10, 20} for octo) integration based on unsupervised learning-based

superpixel matching with kNN and RF [18]. Results from [3] are also reported with bounding

boxes displayed in yellow. 27



series of medical images can be also processed with the proposed methodology.

Reliable ROI tracking through MSI is also shown on synthetic images (Fig.8)

despite strong scale variations. Propagation of matching errors with SEQ is505

clearly illustrated Fig.7 for lapa (kNN) and Fig.9 for bag. Tracking failures with

DIR are temporally uncorrelated but strong enough to damage the propagation

task for the fish (Fig.9) due to color variations of its right part. ROI tracking for

octo (Fig.9) gives correct results both with kNN and RF despite significant color

similarities with the dynamic background. Experiments for swan (Fig.5) and510

sle1 (Fig.8) videos demonstrate that RF-based MSI outperforms kNN-based

MSI as well as RF-based DIR and SEQ. More globally, results suggest that the

SLIC superpixel algorithm [28] is enough accurate to provide visually meaningful

entities to be accurately tracked along video sequences.

Comparisons with [3] are provided for bag, fsh3, and octo sequences (Fig.9).515

The first finding is that [3] only provides sparse bounding box tracking and do

not describe how the boundaries evolves in time, as performed by the proposed

superpixel tracker. Despite an accurate tracking of the foreground fish (fsh3

sequence), [3] results in long-term tracking failures for bag (especially in I71).

Furthermore, it does not show robustness to strong scale variations and color520

similarities with the dynamic background (I110 and I120 for octo) contrary to

RF-based MSI which offers an efficient pixel-wise long-term object delineation.

Another visualization through prediction masks given Fig.5 for the {I1, I34}

swan pair confirms the ability of RF-based MSI to reach accurate long-term

correspondences (see for instance the swan beak). In such maps, a given object525

part must keep the same color between training and prediction in case of correct

matching. Improvements from RF-based DIR to MSI can be noticed for both

low-textured areas (as in the water) and highly-textured ones.

4.3. Long-term candidate generation

We propose to perform a more in-depth study of multi-step integration by530

comparing different long-term candidate generation strategies in terms of track-

ing accuracy. As described Sect.3.2, long-term superpixel candidates can be
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Dice F-measure consistency

MSId MSIr MSIm MSId MSIr MSIm MSId MSIr MSIm

bag 84.5 91.9 92.9 80.3 88.3 88.3 19.2 27.8 27.8

fsh3 92.0 92.0 92.0 94.9 95.4 95.4 52.8 59.6 58.7

octo 91.8 92.2 92.8 83.8 84.4 86.0 71.6 75.8 75.7

lapa 92.6 92.9 92.8 94.2 95.2 94.8 85.4 91.5 91.5

sl1.1 95.7 95.8 95.9 94.5 94.8 95.5 91.2 93.7 93.4

sl1.2 90.3 91.0 90.9 91.8 94.5 93.9 78.6 90.4 91.2

sl1.3 94.2 94.3 94.2 81.3 81.5 81.6 90.0 99.5 100

swan 93.2 93.1 93.4 93.4 93.0 93.8 70.6 77.6 77.7

bear 92.2 92.5 92.5 83.3 82.9 82.1 54.7 67.0 67.2

caml 79.6 79.3 79.6 69.6 69.3 69.1 44.2 54.1 54.7

cows 90.0 89.3 89.1 75.5 74.4 74.1 59.8 67.2 67.6

flam 79.8 80.7 80.8 64.0 69.0 71.9 40.9 54.3 55.0

avg 89.7 90.4 90.6 83.9 85.2 85.5 63.3 71.5 71.7

Table 4: Dice, F-measure and consistency scores for ROI tracking across 10 sequences. Based

on RF-based superpixel elementary matches, we compare three different superpixel candidate

generation strategies for multi-step (MSI) integration using: only direct candidates (MSId),

direct and reverse candidates (MSIr), only candidates generated in both direct and reverse

directions (MSIm). Bold results indicate the best performance.

generated using direct candidates only (MSId), both direct and reverse candi-

dates (MSIr) or only candidates generated in both direct and reverse directions

(MSIm). Note that the previously given MSI results corresponded to MSIm where535

only superpixel duplicates are taken into account for majority voting (Eq.12).

MSId, MSIr and MSIm are comparatively evaluated in terms of tracking accu-

racy based on RF-based superpixel elementary matches. Dice, F-measure and

consistency scores are reported across the 10 sequences used for ROI tracking.

Results from Tab.4 bring two main findings. First, we observe that tracking540

accuracy is improved when reverse candidates are used additionally to direct

ones. Consistency ratios are clearly improved (from 63.3 to 71.5% when com-

paring MSId/MSIr) as expected but Dice and F-measure improvements can be

also observed with gains of 0.7 and 1.3 between MSId/MSIr. Second, relying on

superpixel duplicates only (MSIm) brings a slighltly better ROI tracking com-545

pared to MSIr. Average results slightly increase from 90.4 to 90.6, 85.2 to 85.5
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and 71.5 to 71.7 for Dice, F-measure and consistency which shows that extensive

mutual matching guidance as performed with MSIm is the best way to perform

long-term superpixel tracking from multi-step elementary correspondences.

5. Conclusion550

In this work, we proposed a two-step pipeline dedicated to long-term su-

perpixel tracking. Unsupervised learning-based superpixel matching is firstly

considered as an elementary displacement estimator to provide correspondences

between consecutive and distant images using either nearest neighbors or ran-

dom forests with robust context-rich features we extended from greyscale to555

multi-channel and forward-backward consistency contraints. Resulting elemen-

tary matches are then combined along multi-step paths running through the

sequence with various inter-frame distances to produce a large set of candi-

date long-term superpixel pairings upon which majority voting selection is per-

formed. Compared to state-of-the-art methods including pixel or patch-based560

strategies which may suffer from regular support regions, video object track-

ing experiments demonstrate that unsupervised learning can produce reliable

correspondences between visually meaningful entities. Moreover, the ability of

multi-step integration to combine these pairings towards accurate long-term

superpixel tracking has been shown against usual direct and sequential integra-565

tions. Extending this work from single to hierarchical multi-scale superpixel de-

composition would deserve further investigation for future research since dealing

with multiple spatial extends can drive the matching process in a coarse-to-fine

fashion. Other superpixel algorithms as well as other features such as spec-

tral features could be employed to further improve unsupervised learning-based570

matching while reducing processing time. In addition, very long-term superpixel

tracking could be reached by combining superpixel pairings estimated with re-

spect to multiple reference frames. Our contributions also give new insights

for optical flow and registration initialization, in particular to provide a better

management of large displacements, appearance and illumination changes. More575
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generally, the proposed framework could be easily extended to other imaging

modalities including series of medical images for anatomical structure tracking.
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