O. Banos, J. Galvez, M. Damas, H. Pomares, and I. Rojas, Window size impact in human activity recognition, Sensors, vol.14, issue.4, pp.6474-6499, 2014.

J. Barbi?, A. Safonova, J. Pan, C. Faloutsos, J. K. Hodgins et al., Segmenting motion capture data into distinct behaviors, Proceedings of Graphics Interface, pp.185-194, 2004.

E. Leonard, T. Baum, and . Petrie, Statistical inference for probabilistic functions of finite state markov chains. The annals of mathematical statistics, vol.37, pp.1554-1563, 1966.

M. David, . Blei, Y. Andrew, and M. Ng, Latent dirichlet allocation, Journal of machine Learning research, vol.3, pp.993-1022, 2003.

Z. Cao, T. Simon, S. Wei, and Y. Sheikh, Realtime multi-person 2d pose estimation using part affinity fields, IEEE Int. Conf. on Computer Vision and Pattern Recognition, pp.7291-7299, 2017.

A. Chaaraoui, P. Climent-prez, and F. Flrezrevuelta, A review on vision techniques applied to human behaviour analysis for ambient-assisted living, Expert Systems with Applications, vol.39, issue.12, p.1087310888, 2012.

S. Cho and H. Foroosh, A temporal sequence learning for action recognition and prediction, IEEE Winter Conf. on Applications of Computer Vision, pp.352-361, 2018.

S. Das, M. Koperski, F. Bremond, and G. Francesca, Deep-temporal lstm for daily living action recognition, IEEE Int. Conf. on Advanced Video and Signal Based Surveillance (AVSS), pp.1-6, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01896064

M. Devanne, S. Berretti, P. Pala, H. Wannous, M. Daoudi et al., Motion segment decomposition of rgb-d sequences for human behavior understanding, Pattern Recognition, vol.61, pp.222-233, 2017.

M. Devanne, H. Wannous, M. Daoudi, S. Berretti, A. D. Bimbo et al., Learning shape variations of motion trajectories for gait analysis, IEEE Int. Conf. on Pattern Recognition, pp.895-900, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01535085

Y. Du, W. Wang, and L. Wang, Hierarchical recurrent neural network for skeleton based action recognition, IEEE Int. Conf. on Computer Vision and Pattern Recognition, pp.1110-1118, 2015.

Y. Dudai, A. Karni, and J. Born, The consolidation and transformation of memory, Neuron, vol.88, issue.1, pp.20-32, 2015.

N. Duminy, D. Sao-mai-nguyen, and . Duhaut, Learning a set of interrelated tasks by using a succession of motor policies for a socially guided intrinsically motivated learner, Frontiers in Neurorobotics, vol.12, p.87, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02087995

Y. Dupont, M. Dinarelli, and I. Tellier, Labeldependencies aware recurrent neural networks, Int. Conf. on Computational Linguistics and Intelligent Text Processing, pp.44-66, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01579071

O. Hikosaka, H. Nakahara, M. K. Rand, K. Sakai, X. Lu et al., Parallel neural networks for learning sequential procedures, Trends in Neurosciences, vol.22, issue.10, pp.464-471, 1999.

S. Hochreiter and J. Schmidhuber, Long short-term memory, Neural computation, vol.9, issue.8, pp.1735-1780, 1997.

P. Diederik, J. Kingma, and . Ba, Adam: A method for stochastic optimization, 2014.

H. S. Koppula and A. Saxena, Learning spatio-temporal structure from rgb-d videos for human activity detection and anticipation, Int. Conf. on Machine Learning, 2013.

I. Lee, D. Kim, S. Kang, and S. Lee, Ensemble deep learning for skeleton-based action recognition using temporal sliding lstm networks, IEEE Int. Conf. on Computer Vision, pp.1012-1020, 2017.

C. Li, P. Wang, S. Wang, Y. Hou, and W. Li, Skeleton-based action recognition using lstm and cnn, IEEE Int. Conf. on Multimedia & Expo Workshops, pp.585-590, 2017.

J. Liu, N. Akhtar, and A. Mian, Skepxels: Spatio-temporal image representation of human skeleton joints for action recognition, 2017.

J. Liu, G. Wang, L. Duan, K. Abdiyeva, and A. C. Kot, Skeleton-based human action recognition with global contextaware attention lstm networks, IEEE Transactions on Image Processing, vol.27, issue.4, pp.1586-1599, 2018.

M. Kinect, , 2014.

P. Valsamis-ntouskos, F. Papadakis, and . Pirri, A comprehensive analysis of human motion capture data for action recognition, Int. Conf. on Computer Vision Theory and Applications, pp.647-652, 2012.

P. Valsamis-ntouskos, F. Papadakis, and . Pirri, Probabilistic discriminative dimensionality reduction for pose-based action recognition, Pattern Recognition Applications and Methods, pp.137-152, 2015.

L. Piyathilaka and S. Kodagoda, Human activity recognition for domestic robots, Field and Service Robotics, pp.395-408, 2015.

N. Raman, J. Stephen, and . Maybank, Activity recognition using a supervised non-parametric hierarchical hmm, Neurocomputing, vol.199, pp.163-177, 2016.

K. Ramirez-amaro, M. Beetz, and G. Cheng, Transferring skills to humanoid robots by extracting semantic representations from observations of human activities, Artificial Intelligence, vol.247, pp.95-118, 2017.

K. Shaoqing-ren, R. He, J. Girshick, and . Sun, Faster rcnn: Towards real-time object detection with region proposal networks, Advances in neural information processing systems, pp.91-99, 2015.

A. Shahroudy, J. Liu, T. Ng, and G. Wang, Ntu rgb+ d: A large scale dataset for 3d human activity analysis, IEEE Int. Conf. on Computer Vision and Pattern Recognition, pp.1010-1019, 2016.

J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio et al., Realtime human pose recognition in parts from single depth images, IEEE Int. Conf. on Computer Vision and Pattern Recognition, pp.1-8, 2011.

D. Richard-s-sutton, S. Precup, and . Singh, Between mdps and semi-mdps: A framework for temporal abstraction in reinforcement learning, Artificial intelligence, vol.112, issue.1-2, 1999.

J. Tayyub, M. Hawasly, C. David, A. Hogg, and . Cohn, Learning hierarchical models of complex daily activities from annotated videos, IEEE Winter Conf. on Applications of Computer Vision, pp.1633-1641, 2018.

J. Tayyub, A. Tavanai, Y. Gatsoulis, G. Anthony, D. Cohn et al., Qualitative and quantitative spatio-temporal relations in daily living activity recognition, Asian Conf. on Computer Vision, pp.115-130, 2014.

M. Vrigkas, C. Nikou, and . Kakadiaris, A review of human activity recognition methods, Frontiers in Robotics and AI, vol.2, p.28, 2015.

M. Joshua, R. J. Wiener, R. Hanley, J. Clark, and . Nostrand, Measuring the activities of daily living: Comparisons across national surveys, Journal of gerontology, vol.45, issue.6, pp.229-237, 1990.

C. Wu, J. Zhang, S. Savarese, and A. Saxena, Watch-n-patch: Unsupervised understanding of actions and relations, IEEE Int. Conf. on Computer Vision and Pattern Recognition, 2015.

C. Wu, J. Zhang, O. Sener, B. Selman, S. Savarese et al., Watch-n-patch: unsupervised learning of actions and relations, IEEE transactions on pattern analysis and machine intelligence, vol.40, pp.467-481, 2018.

S. Zhang, X. Liu, and J. Xiao, On geometric features for skeleton-based action recognition using multilayer lstm networks, IEEE Winter Conf. on Applications of Computer Vision, pp.148-157, 2017.