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Abstract
The Sentinel‐1 mission is part of the European Copernicus program aiming at pro-
viding observations for Land, Marine and Atmosphere Monitoring, Emergency 
Management, Security and Climate Change. It is a constellation of two (Sentinel‐1 
A and B) Synthetic Aperture Radar (SAR) satellites. The SAR wave mode (WV) 
routinely collects high‐resolution SAR images of the ocean surface during day and 
night and through clouds. In this study, a subset of more than 37,000 SAR images 
is labelled corresponding to ten geophysical phenomena, including both oceanic and 
meteorologic features. These images cover the entire open ocean and are manually 
selected from Sentinel‐1A WV acquisitions in 2016. For each image, only one preva-
lent geophysical phenomenon with its prescribed signature and texture is selected 
for labelling. The SAR images are processed into a quick‐look image provided in 
the formats of PNG and GeoTIFF as well as the associated labels. They are con-
venient for both visual inspection and machine learning‐based methods exploita-
tion. The proposed dataset is the first one involving different oceanic or atmospheric 
phenomena over the open ocean. It seeks to foster the development of strategies or 
approaches for massive ocean SAR image analysis. A key objective was to allow 
exploiting the full potential of Sentinel‐1 WV SAR acquisitions, which are about 
60,000 images per satellite per month and freely available. Such a dataset may be 
of value to a wide range of users and communities in deep learning, remote sensing, 
oceanography and meteorology.
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1 |  INTRODUCTION

The world's ocean covers more than 70% of the Earth's sur-
face, playing a crucial role in influencing the climate sys-
tem. Comprehensive measurements and observations of 
ocean surface are essential to better understand air–sea in-
teractions as well as to develop high‐resolution climate mod-
els (Topouzelis and Kitsiou, 2015; Schneider et al., 2017). 
Among the various space‐borne sensors, Synthetic Aperture 
Radars (SAR) met both high‐resolution and all weather 
day‐and‐night imaging criteria. SAR backscattering is very 
sensitive to the sea surface roughness composed of centime-
tre‐scale waves. When air–sea interactions are strong enough 
to modulate these short waves, SAR can capture signatures of 
geophysical processes such as ocean waves (Ardhuin et al., 
2009; Collard et al., 2009), atmospheric processes (Atkinson 
and Wu Zhang, 1996; Young et al., 2005; Alpers et al., 2016) 
and oceanic processes (Espedal et al., 1996; Jia et al., 2018). 
Therefore, SAR is a unique tool for extensive observation 
of ocean–atmosphere interactions at sub‐km scales (Brown, 
2000; Jackson and Apel, 2004).

SAR sensors have a variety of acquisition modes. A 
common one is wide‐swath which provides data over sev-
eral hundred kilometres. More specifically for Sentinel‐1, 
wide‐swath acquisitions in TOPS mode (De Zan and 
Monti Guarnieri, 2006) (Extended wide swath EW and 
Interferometric wide swath IW) are mainly used for moni-
toring of sea ice areas and coastal regions over the ocean. 
Due to power and data constraints of contemporary systems, 
the wide‐swath mode with high‐resolution capability is not 
able to collect data continuously and globally. The 'WaVe 
mode' (WV or WM), by contrast, is dedicated to measur-
ing ocean waves from the global open ocean. This mode 
was firstly introduced on Earth observation mission by the 
European Space Agency (ESA) for the European Remote 
Sensing (ERS‐1/2) missions (1991–2003) (Kerbaol et al., 
1998). Since then, acquisitions in WV have been pursued 
on Envisat advanced SAR (ASAR) mission (2002–2012) 
(Stopa et al., 2016) and now Sentinel‐1 (Torres et al., 2012), 
providing more than 25  years of high‐resolution observa-
tions of the world's ocean. The recent launches of Sentinel‐1 
(S‐1) A and B in April 2014 and 2016 for the European 
Copernicus Program enable routine SAR WV acquisitions 
to be available. These two sensors collect nearly 120,000 
WV vignettes with ocean surface imprints of 20 × 20 km in 
each month. Their spatial resolution is about 5 m. The pri-
mary intent of the small‐sized vignettes is to provide ocean 
swell directional spectra as an ESA Level‐2 ocean product 

(Torres et al., 2012). However, they also capture a much 
wider range of geophysical processes that are of significant 
interest in ocean–atmosphere interactions. Global coverage 
is combined with high resolution and routine acquisitions in 
all weather conditions during day and night; and at such high 
resolution (5 m) make S‐1 WV a presence and unique data 
source for new geophysical applications.

In this study, we define ten categories of different oce-
anic or atmospheric phenomena. These are the most com-
mon phenomena that can be observed in S‐1 WV vignettes. 
The categories are pure ocean waves (POW), wind streaks 
(WS), micro convective cells (MCC), rain cells (RC), bi-
ological slicks (BS), sea ice (SI), icebergs (IB), low wind 
areas (LWA), atmospheric fronts (AF) and oceanic fronts 
(OF). Details on these definitions are introduced in Section 
2. A labelled SAR WV dataset containing 37,553 images 
is then established. Within each image, only the preva-
lent geophysical phenomenon with clear signature and/
or pattern is presented. The images are derived from the 
Single Look Complex (SLC) product of S‐1 WV (Torres 
et al., 2012), and provided in formats of Portable Network 
Graphics (PNG) and Georeferenced Tagged Image File 
Format (GeoTIFF). The proposed dataset, called TenGeoP‐
SARwv for ‘Ten Geophysical Phenomena from SAR wave 
mode’, is provided by IFREMER and publicly available 
at sea scientific open data publication (SEANOE): http://
www.seanoe.org/data/00456/ 56796/ . The methodology 
used to create the dataset is described in section 3. Such 
a labelled dataset could benefit the strategic development 
of massive ocean SAR data analysis. Deep learning signal 
processing algorithms that are now a common form of su-
pervised learning may be exploited (LeCun et al., 2015; 
Cheng et al., 2017). In addition, this unique dataset is also 
significant to the communities of remote sensing, ocean-
ography and meteorology. Discussion and perspectives re-
garding to potential applications and dataset refinement are 
given in section 4.

2 |  GEOPHYSICAL PHENOMENA 
BY SENTINEL‐1 WAVE MODE

The ESA S‐1 mission is a constellation of two polar orbit-
ing, sun‐synchronous satellites (S‐1 A and S‐1 B) launched 
in April 2014 and 2016 respectively (Torres et al., 2012). 
These two satellites both have a 12‐day repeat cycle at 
the equator, and are phased at 180° to provide an effec-
tive 6‐day repeat cycle. For each satellite, the expected 
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life time is 7 years. Both carry a C‐band SAR instrument 
with centre frequency of 5.405 GHz (5.5 cm wavelength). 
There are four exclusive imaging modes (Interferometric 
Wide swath, Extra Wide swath mode, Strip Map and Wave 
Mode1) for the S‐1 SAR sensors. WV is the default op-
erational mode over open ocean unless wide‐swath SAR 
images are requested for particular applications. Note that, 
at present, there is no WV acquisition in the Arctic Ocean 
and closed seas such as Red, Black, Mediterranean and 
Caribbean seas. And in this study, we only use WV data 
acquired by Sentinel‐1A in 2016. However, extensive vali-
dations have confirmed that SAR images acquired by S‐1B 
are characteristic essentially equivalent to that from S‐1A.

2.1 | Acquisitions

The vignettes of S‐1 WV are collected in 20 × 20 km scenes 
at two alternate incidence angles of 23.8° (WV1) and 36.8° 
(WV2). They are acquired over the global open ocean with 
an along‐track sampling separation of 100 km and an across‐
track distribution of roughly 200 km. Pixels within each vi-
gnette have 5  m ground resolution and can be obtained in 
VV (default) or HH polarization. For the polarization con-
figurations, the first letter stands for the polarization of the 
emitting transmitter (as SAR is an active radar), whereas the 
second one is for the receiver polarization configuration. This 
study only relies on vignettes acquired in VV polarization as 
they account for more than 99% of all S‐1 WV acquisitions. 
The S‐1 WV backscatter consists of intensity and phase his-
tory and can be potentially processed into the SLC products 
for wave applications (Torres et al., 2012). Using the digital 
number (DN) of these complex products and Look‐Up‐Table 
(sigmaNaught) annotated in the product, we compute the 
normalized radar cross section σ0. This is the common radar 
parameter used to describe radar return backscattered by the 
ocean surface to the SAR sensors.

2.2 | Ten geophysical phenomena

In this subsection, the ten defined oceanic or atmospheric 
phenomena are presented. Due to the 20‐km WV image 
size, scales of observed geophysical phenomena are limited 
to about between 0.1 and 5 km. We focus on the prescribed 
ten geophysical phenomena because they are commonly 
observed by the S‐1 WV SAR vignettes. It is worth noting 
that the WV can also capture signatures of other geophysi-
cal phenomena like internal waves (Jia et al., 2018) and 
atmospheric gravity waves (Li et al., 2013), and signatures 
of ships or platforms. While such phenomenaS are seldom 
seen in the open ocean, we may include those categories in 
this dataset in the near future.

2.2.1 | Pure ocean waves (POW)

Ocean waves including ocean swell and wind waves are 
the most prevalent feature in all SAR images (Fu and Holt, 
1982; Jackson and Apel, 2004). Signatures of ocean waves 
often coexist with other oceanic and/or atmospheric phe-
nomena. The short wind waves (centimetre to metre scale) 
are produced by local surface winds while ocean swell are 
longer (hundreds of metres) surface waves that are gener-
ated by distant weather systems such as storms or cyclones. 
These mechanical waves are propagating without any wind 
forcing after the wind blows for a period of time over a 
fetch of water (Ardhuin et al., 2009). Ocean waves can be 
observed in all ocean basins, and their measurement with 
SAR relies on the theories of microwave scattering from 
rough sea surface (Hasselmann et al., 1985; Collard et al., 
2009; Stopa et al., 2016). SAR imaging of swell waves is 
typically influenced and distorted by different geophysical 
phenomena. This makes wave interpretation of SAR im-
agery difficult. Our definition of pure ocean waves (POW) 
is a SAR vignette that contains boundless ripples through-
out the image, as displayed in Figure 1a. The following 
criteria are adopted for this category:

1. Periodic signatures of ocean waves dominate the whole 
image

2. Wavelengths are between 0.1 and 0.8 km
3. Intensity modulation within the scene is homogeneous
4. There is no other competing geophysical feature or pattern

2.2.2 | Wind streaks (WS)

Wind streaks are known to be the sea surface imprint of at-
mospheric boundary layer (ABL) rolls (Vandemark et al., 
2001). They usually occur in near‐neutral to moderately un-
stable stratification conditions and span the whole depth of 
ABL. The approximately wind aligned wind streaks are the 
result of an embedded overturning coherent secondary cir-
culation in the boundary layer that is induced by the vertical 
shear of the mean horizontal wind that can be further modi-
fied by the mean vertical stratification profile (Brown, 1980; 
Etling and Brown, 1993; Young et al., 2002). The enhanced 
upward and downward wind perturbations near the surface 
between roll circulations are usually strong enough to modu-
late centimetre‐scale waves and therefore induce organized 
imprints on the sea surface roughness. Consequently, wind 
streaks are frequently observed by SAR images as periodic, 
quasi two‐dimensional and roll‐shaped patterns (Alpers and 
Brümmer, 1994; Young et al., 2002), as displayed in Figure 
1b. It shows that the periodic pattern of wind streaks is super-
imposed at top signatures of ocean waves. In addition, some 
vignettes of wind streaks contain cell‐shaped patterns (Micro 

(1)�0 =
|DN|2

sigmaNaught2
.
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convective cells). This indicates the transition between two 
different regimes in the marine ABL (Atkinson and Wu 
Zhang, 1996; Jackson et al., 2004). This transient stage can 
sometimes be tricky to decipher between the two classes. The 
criteria of wind streaks (WS) are:

1. Periodic linear features dominate the whole image
2. Wavelengths are between 0.8 and 5 km
3. Intensity modulation within the scene is homogeneous
4. Periodic signatures of ocean waves can coexist

2.2.3 | Micro convective cells (MCC)

Atmospheric convective cells are coherent structures of up-
drafts and downdrafts in the ABL (Khalsa and Greenhut, 
1985; Atkinson and Wu Zhang, 1996). The local tempera-
ture difference between air and sea produces strong vertical 
exchange of heat. It creates cell‐shaped rising/descending 
air, which leads to horizontal variability of sea surface wind 
speed. This wind variability modulates the centimetre‐scale 
waves and thus the sea surface roughness. Therefore, coher-
ent, periodic and cell‐shaped patterns are normally visible 
on SAR images (Babin et al., 2003). Note that the scale (ra-
dius) of atmospheric convective cells captured within these 
20‐by‐20 km WV vignettes is about 1 km. It indicates that 
the cells here are mainly associated with shallow dry con-
vection, where latent heat from condensation plays no role 
in the dynamics (Atkinson and Wu Zhang, 1996). This re-
sults in a category that we define as micro convective cells 
(MCC). However, roll‐shaped pattern caused by wind streaks 
are also often visible in such vignettes. The key to distinguish 

between WS and MCC categories is based on which pattern 
dominates the image. An example of MCC vignette is dis-
played in Figure 1c. The criteria of this category are:

1. Coherent, periodic and cell‐shaped features dominate the 
whole image

2. Scales are about 1 km
3. Intensity modulation within the scene is homogeneous
4. Periodic signatures of ocean waves can coexist, but they 

can be strongly distorted

2.2.4 | Rain cells (RC)

Rain can occur in many forms, such as downdraft, stratified 
rain, rain bands, squall lines and so on. Although the scat-
tering mechanisms of C‐band SAR for rain signatures are 
not fully understood, they can be generally characterized by 
high and low contrasts in backscatter (Alpers et al., 2016). 
Here we only focus on the rain cells that are typically associ-
ated with downdraft patterns. Their signatures can be clearly 
captured by WV SAR vignettes. Our definition of rain cells 
(RC) largely concentrate on the vignettes containing circu-
lar‐ or semi‐circular–shaped areas. This is typical signatures 
of wind gust fronts caused by the downdraft. Besides, bright 
and/or dark patches usually appear inside the circular areas. 
Dark patches are usually explained by signal attenuation due 
to rain droplets in the atmosphere. Bright areas are generally 
associated with splash due to the heavy rain impacts sea sur-
face roughness. An example is given in Figure 1d. Note that 
the circular shape of RC is expected to be larger than that of 
MCC and may be sometimes larger than the vignette size. 
Our criteria for this category are:

F I G U R E  1  From (a) to (g) are image examples of pure ocean waves, wind streaks, micro convective cells, rain cells, biological slicks, sea 
ice, icebergs, low wind area, atmospheric front and oceanic front

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)
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1. Circular‐ or semi‐circular–shaped areas are visible on 
SAR image

2. There are bright and/or dark patches inside the circular areas
3. Intensity modulation within the scene is heterogeneous
4. Periodic signatures of ocean waves can coexist with RC

2.2.5 | Biological slicks (BS)

Biological slicks (BS) in the ocean are natural films that accu-
mulate at the water–air boundary (Jackson et al., 2004). These 
surface slicks are typically only one molecular layer thick 
(approximately 3 nm) and consist of sufficiently hydrophobic 
substances. This thin film influences air–sea fluxes of mo-
mentum, heat and gas (Espedal et al., 1996). Under low wind 
speeds, sea surface capillary and short gravity waves can be 
damped by the natural films. Thus, their signatures are usually 
visible as dark filaments on SAR images. The slicks captured 
by S‐1 WV are generally randomly distributed over sea sur-
face, see Figure 1e. Due to the coverage limitation of WV vi-
gnettes, the scale of slicks is hard to be quantified. However in 
some cases, they can be tracers of the ocean circulation such as 
surface currents, ocean fronts and eddies (Johannessen et al., 
1996). The following criteria are used to define this category:

1. Dark filaments are visible on SAR image
2. Intensity modulation within the scene is heterogeneous
3. Periodic signatures of ocean waves can coexist with BS, 

but they can be distorted

2.2.6 | Sea ice (SI)

Sea ice is defined as frozen ocean water which could be 
growing or melting. It is typically sorted according to 
whether or not it is attached to the shoreline, or described 
based on its development stages, such as new ice, nilas, 
young ice, first‐year and old (Jackson et al., 2004). SAR 
backscattering of sea ice essentially depends on the ice type, 
and therefore can be quite diverse due to the wide range of 
ice types. The textures of sea ice on SAR images are fairly 
complex. They can be roughly characterized by web shapes, 
three‐dimensional structure, wiggly fractures, and high con-
trast (dark and bright patches) (Soh and Tsatsoulis, 1999). 
Our aim here was not to identify different sea ice types, but 
rather distinguish sea ice from open ocean water. Therefore, 
this category contains SAR vignettes of all ice types in the 
Southern Ocean near Antarctica. One sea ice example is 
shown in Figure 1f. The criteria of this category are:

1. Textural contexts are complex, which can be web‐shaped, 
wiggly fractures, pebble‐like, fractal and so on

2. Patches with sharp boundaries are usually visible on SAR 
image

3. There are strong intensity contrasts between different 
patches

4. Periodic signatures of ocean waves can coexist, but they 
can be severely distorted

5. Vignettes are mainly collected from the Southern Ocean 
near Antarctica

2.2.7 | Iceberg (IB)

Icebergs are large pieces of frozen freshwater that have bro-
ken off a glacier or an ice shelf and are floating freely in open 
water or sea ice area. They are categorized according to the 
size including growler (0–5  m), bergy bit (5–15  m), small 
berg (15–60 m), medium berg (60–120 m), large berg (120–
220 m) and very large berg (>220 m), and/or with respect to 
their shape such as tabular, non‐tabular, blocky, wedge, dry 
dock and pinnacle (Jackson et al., 2004). In SAR images, 
icebergs appear as a cluster of pixels that have the uniformly 
high/low backscatter signals compared to the surroundings 
(sea water and sea ice). In our definition, the iceberg vignette 
contains one or several icebergs that are visible as bright tar-
gets. Possibly, there is a relatively dark shadow associated 
with the small bright cluster. This category focuses on the 
icebergs in the open sea water, as displayed in Figure 1g. 
Thus, the criteria of this category are:

1. Bright or Dark targets associated with dark shadows 
are visible on SAR image

2. Intensity modulation of the surroundings is homogeneous
3. Periodic signatures of ocean waves can coexist with IB
4. They are mainly distributed in the Southern Ocean near 

Antarctica

2.2.8 | Low wind areas (LWA)

When the local surface winds are too weak, sea state normally 
remains stationary for hours. Generally, there is no signature 
of ocean swell propagation and the small cm‐scale rough-
ness is absent too. Consequently, SAR backscatter from such 
sea surface is weak, resulting in dark areas on SAR images 
(Topouzelis and Kitsiou, 2015). Note that low wind condition 
is also necessary for the presence of biological slicks on SAR 
image. Thus, signatures of BS may exist at the boundaries of 
dark areas. In addition, LWA can also occur in areas where 
wind speed and/or direction suddenly change. Appearance of 
such LWA typically has a very large dark area accompanying 
by an atmospheric front. To distinguish from the definition 
of atmospheric front, the LWA category focuses on the vi-
gnettes that are dominated by a unique dark patch. An exam-
ple is shown in Figure 1h. The criteria of LWA are:
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1. A unique dark patch dominates the SAR image
2. Intensity modulation within the scene is heterogeneous
3. Periodic signatures of ocean waves are absent

2.2.9 | Atmospheric front (AF)

sAtmospheric fronts are associated with air mass boundaries 
and thus strong near‐surface horizontal gradients of wind, 
temperature and/or humidity (Johannessen et al., 1996). 
Unstable atmosphere conditions generally lead to occur-
rence of rain and low and high wind areas along the fronts. 
Therefore, signatures of atmospheric fronts observed by SAR 
are largely complex and have been called different names, 
including lobe, cleft, vortex, front and secluded front, based 
on their pattern (Young et al., 2005). Figure 1i presents a 
vignette example of a typical atmospheric front observed by 
S‐1 WV. This category is defined by the following criteria:

1. The edge of the front is typically not sharp, but rather 
a bit mottled or occluded

2. Besides the front, there are obvious intensity gradients
3. Intensity modulation of the surroundings is homogeneous
4. Periodic signatures of ocean waves can coexist with AF

2.2.10 | Oceanic front (OF)

Oceanic fronts are the boundaries between two distinct water 
masses that can be caused by a difference in oceanic tem-
perature, salinity and/or density. The water masses near an 
oceanic front usually move in different directions, leading 
to downwelling or upwelling along the front and hence cre-
ate a sea surface roughness anomaly (Rascle et al., 2017). 
Enhanced or reduced sea surface roughness anomalies are 
visible as the bright or dark lines in SAR vignettes, as dis-
played in Figure 1g. Beside such lines, there are no obvious 
intensity gradients on the SAR image. This is the main dis-
tinction between OF and AF. The criteria of this category are:

1. A thin bright or dark mono‐filament like linear feature 
is visible on SAR image

2. There is no obvious intensity gradient across the linear 
feature

3. Intensity modulation of the surroundings is homogeneous
4. Periodic signatures of ocean waves can coexist with OF

3 |  DATASET CREATION
3.1 | SAR image processing

The 20 × 20 km image with 5 m resolution provides an image 
with more than 4,000 pixels in range and azimuth directions. 
This full‐scale WV intensity image is not necessary for visual 

interpretation of oceanic or atmospheric phenomena. For in-
stance, an example of a full resolution σ0 image with features 
of wind streaks is shown in Figure 2a. It is clear that the wind 
streaks are concealed due to the low intensity contrast. In ad-
dition, the subplot of σ0 mean values along range is displayed 
in Figure 2a*. It indicates that values of σ0 slightly vary with 
different incidence angles within images. Therefore, three 
processing steps are applied to σ0 images to enhance broad‐
scale features of oceanic and atmospheric phenomena.

3.1.1 | Re‐calibration of σ0

The σ0 as measured by SAR over the ocean is highly depend-
ent on the local ocean surface wind and viewing angles of 
the radar (incidence and azimuth angles). For a given wind 
speed, the overall σ0 decreases along the range direction, 
as displayed in the inset plot of Figure 2a*. This decreas-
ing trend in range is mainly associated with the increasing 
incidence angle, which is common to all C‐band VV SAR 
imagery. The empirical geophysical model function, such as 
CMOD5.N for VV C‐band SAR (Hersbach, 2010), models 
the σ0 dependence on wind vector and radar incidence angle. 
To reduce the incidence angle effect, we use CMOD5.N to 
construct a reference factor by assuming a constant wind of 
10 m/s at 45° relative to the antenna look angle. The σ0 of 
each vignette can then be re‐calibrated by dividing the refer-
ence factor. Note that the σ0 values are in linear scale. Such 
re‐calibrated σ0 is referred as sea surface roughness (ssr) and 
is shown in Figure 2b. Specifically the ssr can be written:

where inc is the radar incidence angle for each pixel. The differ-
ence of intensity in ssr image between near (left) and far (right) 
field is significantly reduced (Figure 2b*.

3.1.2 | Downsampling

The fine‐resolution SAR vignettes are not favourable for 
visual interpretation of larger scale geophysical features, 
especially since our category definitions focus on phenom-
ena with scale of tens to thousands of metres. The expected 
length scales of larger phenomena corresponding to the 
category definition are from 100 m to 5 km. Therefore to 
better highlight the larger features, a moving averaging win-
dow of 10‐by‐10 pixels is applied to the ssr images. This 
averaging also reduces the speckle noise of SAR vignettes 
(Lee et al., 1994). The ssr intensity images (Figure 2b) are 
then downsampled by 1/10 yielding a resolution of 50 m, as 
shown in Figure 2c. As shown, the pattern of wind streaks 
overlapping on ocean swell is appreciably highlighted. It is 
worth noticing that the spatial filtering applied in this study 

(2)ssr=
σ0

CMOD5.N(10,45,inc)
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achieves similar results as for the classical SAR multi‐look 
technique. But the later performs the filtering in the image 
spectral domain, which is relatively time‐consuming.

3.1.3 | Normalization

1. For Shuman visual inspection To enhance intensity 
contrast of the downsampled images, a statistical method 
of percentile is used to normalize each vignette. By 
sorting intensity values of an image, the proportion of 
principal data that falls between two given percentiles 
can be estimated (Natrella, 2013). For each image, this 
method split the ordered intensity values into hundredths, 
and pixel values between the 1st (minimum) and 99th 
(maximum) are normalized into a 8 bits grey scale ([0, 
255]). With this processing, potential remaining anomaly 

(speckle noise) in the ssr values are effectively filtered. 
In Figure 2d, the image of wind streaks in grey scale 
after normalization is presented. It shows that the nor-
malized image with enhanced contrast is better suited 
for visual interpretation of our identified oceanic and 
atmospheric phenomena.

2. For machine learning‐based exploitation For the sake 
of machine learning approaches, another normalization 
process is also implemented. As opposed to the dataset 
used for human visualization where the retained minimum 
and maximum values are specific for each image, fixed 
values of 0 and 3 common to the entire database are ap-
plied to all downsampled ssr images. In between these two 
values, the quantization process is instead performed on 
16 bits ([0, 65,535]) ensuring all texture and radiometric 
information are numerically maintained.

F I G U R E  2  SAR image processing of the case with wind streaks. (a) σ0 image (b) image of sea surface roughness derived from σ0 (c) 
intensity image down sampled from roughness (d) intensity image with enhanced contrast. Subplots of * in (a) and (b) are profiles of σ0 and 
roughness images along the range direction

(a) (b)

(c) (d)
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3.2 | TenGeoP‐SARwv dataset

The TenGeoP‐SARwv dataset is established based on the 
acquisitions of S‐1A WV in VV polarization. This dataset 
consists of 37,553 SAR vignettes divided into our ten geo-
physical categories. For each category, the selection of SAR 
images covers the full year of 2016, and is manually labelled 
through visual inspection following the criteria documented 
in Section 2.2. Two screening standards are adopted. One 
is that only one individual geophysical phenomenon domi-
nates across the whole vignette. The other one is that pattern 
structure of this phenomenon is clearly visible by human eye. 
Table 1 presents the counts of each category for each month. 
We attended to have 400 images labelled for each class in 
each month. However, we could not reach this number for the 
OF category. Moreover, only a few IB images were found in 
May to October due to the iceberg seasonality.

3.3 | Data format

The image patches are provided in formats of Portable 
Network Graphics (PNG) and Georeferenced Tagged Image 
File Format (GeoTIFF). PNG files are processed with floating 
normalization for better visualization of human eyes. While 
in GeoTIFF files, high precision values (16 bits) as well as 
the geographical information are kept for exploitation of ma-
chine learning‐based approaches and geophysical application. 
In addition, text files containing description of categories and 
information for the file name, labelling, swath, capture time, 
and centre latitude and longitude of each image are also pro-
vided. These SLC products of S‐1 WV are freely available 
at 'Sentinel open access hub' of ESA https ://senti nel.esa.int/
web/senti nel/senti nel-data-access. Notice that the GeoTIFF of 
TenGeoP‐SARwv dataset is completely different from that of 
ESA SLC product. The latter contains original data and much 
more image processing information than this labelled dataset.

4 |  DISCUSSION AND 
PERSPECTIVES

SAR images capture signatures of various geophysical 
phenomena that are associated with air–sea interactions. 
Most of them have been previously discussed to provide 
a comprehensive understanding of their imprints on SAR 
imagery (Alpers and Brümmer, 1994; Young et al., 2005; 
Li et al., 2013; Alpers et al., 2016). Several of these phe-
nomena factor significantly in the vertical transport of 
heat, moisture and momentum, and play key roles in the 
climate system (Khalsa and Greenhut, 1985; Ufermann 
and Romeiser, 1999; Vandemark et al., 2001; Schneider 
et al., 2017). Although understood, these manifestations 
of key geophysical phenomena are not systematically an-
alysed or ingested in numerical models. In particular, au-
tomated detection and classification of these phenomena 
from the numerous SAR images is still challenging. The 
proposed SAR imagery dataset with individual annota-
tions of oceanic or atmospheric phenomena should allow 
new efforts to test, validate and benchmark different 
methods for the identification of key geophysical pro-
cesses. The annotations will allow massive classification 
of the data and open new perspectives for global or sea-
sonal analysis of these phenomena. This work is a step 
towards broadening the scientific value of 25 years WV 
data acquired by ERS‐1/2, Envisat ASAR and Sentinel‐1 
(Kerbaol et al., 1998; Torres et al., 2012; Stopa et al., 
2016). In addition, this labelled dataset can be directly 
used to statistically investigate the geophysical proper-
ties of the ten defined phenomena and characteristics of 
the imaged features. Therefore, such a dataset of labelled 
ocean SAR imagery is put forward for both scientific 
and engineering applications for different communities 
such as deep learning, remote sensing, oceanography and 
meteorology.

T A B L E  1  SAR image numbers of the labelled dataset for each class in every month of 2016

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total

POW 406 407 408 409 406 408 410 409 409 409 408 411 4,900

WS 406 409 403 407 404 391 396 398 397 398 384 404 4,797

MCC 396 384 370 384 385 365 386 388 380 391 384 385 4,598

RC 398 399 398 395 398 391 395 393 393 396 394 390 4,740

BS 398 394 395 398 397 339 397 398 397 400 398 398 4,709

SI 387 150 282 396 396 392 393 393 396 396 396 393 4,370

IB 399 417 308 146 58 29 10 14 12 29 159 399 1,980

LWA 137 137 138 220 201 95 214 144 207 207 241 219 2,160

AF 360 282 301 348 363 234 361 377 378 367 364 365 4,100

OF 61 85 64 102 131 60 116 135 96 108 132 109 1,199

Total 3,348 3,064 3,067 3,205 3,139 2,704 3,078 3,049 3,065 3,101 3,260 3,473 37,553

https://sentinel.esa.int/web/sentinel/sentinel-data-access
https://sentinel.esa.int/web/sentinel/sentinel-data-access
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4.1 | SAR image classification with 
deep learning

In recent years, state‐of‐the‐art deep learning based tech-
niques, for example Convolutional Neural Network 
(CNN), have been developed rapidly for image processing 
applications (LeCun et al., 2015). CNN model is a deep 
multilayer architecture that can be trained to automatically 
extract the optimal image feature representations and am-
plify the discrimination between different classes (LeCun 
et al., 2015). This new approach has been widely intro-
duced to remote sensing (Zhang et al., 2016; Chen et al., 
2016; Cheng et al., 2017). However, a lack of high‐quality 
labelled datasets limits further application and develop-
ment of CNN models for ocean SAR images. The pro-
posed TenGeoP‐SARwv dataset could be used as a training 
dataset for the identification and classification of different 
key geophysical phenomena occurring over open ocean. It 
can be used to directly fine‐tune existing CNN models for 
straightforward geophysical applications, or explore new 
CNN architectures to improve feature representations. In 
fact, one relevant work has been conducted and the prelim-
inary result was presented at the International Geoscience 
and Remote Sensing Symposium (IGARSS) in 2018. We 
believe that the large number of images in each of these ten 
classes satisfy the requirement to train a deep CNN model. 
Moreover, unsupervised learning algorithms by combining 
deep learning and reinforcement learning will become far 
more important (LeCun et al., 2015) and can also benefit 
from this dataset. However, there is still room in the pro-
posed dataset for improvement. In the near future, more 
geophysical categories corresponding to other oceanic or 
atmospheric phenomena should be included. In addition, 
some of the vignettes contain multiple geophysical phe-
nomena within the same scene even they are small‐sized 
SAR images. Multi‐labelling of those images is more of 
interest and important to the deep learning community for 
methodologies exploitation.

4.2 | Ocean SAR remote sensing

Space‐borne SAR provides a unique means to observe the 
ocean surface. Despite the multi‐scale nature of ocean sur-
face waves, C‐band SAR mainly responds to cm‐scale sea 
surface roughness through Bragg resonant scattering (Alpers 
and Brümmer, 1994; Jackson et al., 2004; Li et al., 2013). 
While radar signal depends on radar properties (wavelength, 
polarization, and incidence and azimuth angles), ocean SAR 
imagery can be generally interpreted as variability in sea sur-
face roughness. Different oceanic or atmospheric phenom-
ena are frequently captured by SAR images owing to their 
modulations on near‐surface wind stress as well as on cm‐
scale ocean waves (Vandemark et al., 2001; Alpers et al., 

2016). How strong the modulations should be to make these 
phenomena visible on SAR images is still an open question 
from a statistical point of view. With the TenGeoP‐SARwv 
dataset, one can potentially investigate the environmental 
conditions under which these phenomena occur. This would 
help to better understand their impact on sea surface rough-
ness and therefore how they are imaged by SAR. In addition 
to that, ocean swell is of first interest as they are a funda-
mental phenomenon over the open ocean. The swell spec-
tra inversion from SAR measurements are still distorted by 
the presence of various oceanic or atmospheric phenomena. 
The dataset of TenGeoP‐SARwv can help us quantify the 
impact of these phenomena on SAR forward mapping from 
ocean wave spectrum to SAR image spectra. Therefore, it 
may be possible to recover more ocean swell estimation by 
taking their impact into account. This will benefit the study 
of global and local wave climate. Given the relatively small 
size of the WV vignette (20  km), the imaged area can be 
roughly assumed as homogeneous and often‐time, only one 
phenomenon dominates. However, it should also be men-
tioned that the small and sparse vignette coverage restricts 
imaging of large‐scale phenomena, such as upwelling, inter-
nal waves, hurricanes, among others.

4.3 | Geophysical investigation

SAR imagery yields high‐resolution imprints of ocean 
surface and provides significant geophysical parameters 
for global weather and climate analysis, demonstrating its 
indispensable contributions to the Earth monitoring sys-
tem (Brown, 2000). Investigation of key geophysical phe-
nomena by utilizing SAR data, for example wind streaks 
and micro convective cells, has been performed for many 
years, mostly in the stage of case and field studies (Alpers 
and Brümmer, 1994; Vandemark et al., 2001; Levy, 2001; 
Babin et al., 2003; Li et al., 2013). Statistical analysis 
of key geophysical phenomenon based on SAR data are 
barely attempted due to lack of reliable dataset. This pro-
posed TenGeoP‐SARwv dataset opens perspective to use 
S‐1 WV acquisitions for global geophysical phenomena 
analysis. Combined with other environmental parameters, 
these labelled SAR vignettes can be used directly to ad-
dress geophysical characteristics of the ten defined specific 
phenomena. The occurrence and atmospheric conditions 
of one specific phenomenon can be of particular interest 
(Levy, 2001). Furthermore, classification of the whole 
acquisitions of S‐1 WV vignette based on the automated 
methodologies inspires us to map the monthly variations 
and seasonal changes of these geophysical phenomena in 
the context of climate modelling. However, the small foot-
print of S‐1 WV limits the observation of larger scale geo-
physical phenomena. Some of the vignettes only capture 
part of the phenomena signatures, for instance, a corner of 
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large‐sized rain cell and a portion of atmospheric front or 
oceanic front.
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