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Abstract
Deploying companion robots for assisting humans requires
safe and robust interaction with the environment, both in
terms of mobility and object manipulation. To extend a
robot’s workspace, we are here concerned with multifloor
operation and staircase traversal, as a building block for
the development of object fetching services. In this article,
we advocate a life-long learning treatment of this prob-
lem within a reinforcement learning (RL) framework. In
view of sparse earlier work for the scenario of interest, we
hereby identify relevant methodological aspects and report
our preliminary developments.
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1 Introduction
Among various application areas, service robots can be
particularly useful in assisting daily human activities, for
example via companion robots [6]. As far as our applica-
tion of interest is concerned, such robots are assumed to
operate within an indoor environment. In such scenarios,
robot operation is most often presumed as 2D although, in
practice, the environment can be 3D and highly variable.
To compensate motor impairments of elderly or frail peo-
ple with limited autonomy, it becomes reasonable to de-
velop robots with improved autonomy in navigation and
object manipulation. Relatedly, for the task of stair traver-
sal, this can be addressed by hard-coded behaviours that
make use of the exact robot kinematics and the staircase
characteristics [12, 13]. In general terms, this approach
is not efficient as it is not easily transferable to different
robots. Likewise, manipulation with objects or movement
on flat or uneven surfaces separately have been receiv-
ing considerable attention during recent years [22, 32, 4].
On the contrary, transporting potentially sensitive objects
while performing staircase traversal has not been studied,
especially in the context of a personal assistance scenario.
Conventionally, stair traversal is performed by methods
presented in the work [1] that usually make some artificial
hypotheses used in control that makes the robot less adapt-

able to new situations, i.e. new robot configurations and
stair shapes. Finally, reinforcement learning could consti-
tute a more suitable approach for avoiding ad hoc solutions
that are customized to particular platforms but it has not
widely been studied.
A number of questions are posed in order to accommodate
such scenarios. How does the task of safe stair traversal
is formulated as a reinforcement learning problem while
taking into consideration the presence of an arm carrying
a sensitive object? How is it possible to generate actions
which respect robot safety? How can novel (unseen) envi-
ronment states or robot configurations be accommodated?
How can we account both for robot safety and other poten-
tially conflicting criteria of performance such as traction?
In view of these questions, our research goal is to develop
robust algorithms that would allow safe operation for a ser-
vice robot capable of (i) indoor, multifloor navigation via
obstacle negotiation such as stairs or steps and (ii) combi-
nation with object-centric assistive services. In this con-
text, the use of approaches that are not based on learning
is overly restrictive because of their inferior generalization
capability. Therefore, the key challenge of the doctoral re-
search concerns the elaboration of methods for 3D mobility
and/or manipulation where the role of learning is eminent,
allowing them to be less dependent on a particular platform
and to require less expert supervision.
The rest of the paper is structured as follows. Section 2
presents related works of the problem of interest. In section
3 we formulate the problem of stair traversal using notions
of reinforcement learning. Section 4 provides preliminary
results related to machine vision algorithms for stair detec-
tion in color and depth images. Finally, section 5 is focused
on future works in navigation and reinforcement learning.

2 Related work
2.1 Learning-free approaches
The task of stair traversal has been predominantly studied
in learning-free frameworks in search and rescue applica-
tions where robots do not generally face the same con-
straints as in service robotics, namely, object and envi-
ronment safety is usually less important relatively to as-
sistive robot applications where it is inadmissible to dam-



age human property. Related robot navigation problems
were studied outside the context of machine learning. For
example, the authors of [23] propose a framework for au-
tonomous 3D path and motion planning including flipper
control for tracked robots where the main idea is to keep
flippers tangentially in contact with the surface. Authors
show that their solution can face any kind of structure
within the limits of the robot’s obstacle negotiation abili-
ties, however they only demonstrate it with two trials. In
[30] the authors present an approach where a tracked robot
with passive sub-crawlers faces obstacles that exceed ob-
stacle negotiation capabilities of [23], a warning system
based on normalized energy stability margin (NESM) and
a traversal algorithm that is able to apply force against
an obstacle in order to climb it. The NESM-based ap-
proaches for stability assessment became widespread in
robotics while at the same time being easy to understand
because the stability criterion simply supposes the calcula-
tion of vertical deviation from the lowest stable position of
the main robotic chassis [14].

2.2 Learning-based approaches

In this section we begin by presenting works that are more
relevant to learning-based staircase traversal and we con-
clude by focusing on the most significant algorithms. The
authors of [25] were among the first to test the deep de-
terministic policy gradient (DDPG) algorithm for the stair
traversal task following an end-to-end fashion. The idea
is to get actions from input data received from the Iner-
tial measurement unit (IMU) sensor, front and back cam-
eras. Q-values, which are the quality measure of a state-
action combination, and policy parameters were approxi-
mated using sophisticated multilayer convolutional neural
networks (CNN), which inevitably induce significant pro-
cessing costs. Another limitation of this work is due to the
sole use of time-demanding simulations as the result of the
chosen function approximations that require a large num-
ber of trials. In turn, this results in lower generalization as
a result of training on a single stair type.
Another more recent and elaborate approach is proposed
by authors of [26]. The authors’ contribution amounts
to the development of RL algorithms for the scenario of
stair traversal. They implement constraints in the contex-
tual relative entropy policy search (Contextual REPS) al-
gorithm [20] based in turn on [28] and [10]. That exten-
sion showed that a small number of iterations is sufficient
to learn stair traversal of a previously unknown obstacle
where the safety of a rollout is computed by a physics-
based simulator. The latter represents software simulating
the main interactions and influence of the real-world sys-
tem and determining as the safety of the rollout as 1 if it
is safe or 0 otherwise. However, the authors did not inves-
tigate the impact of context represented by variables like
the height of an obstacle that do not change during the task
execution but might change from task to task. We consider
this paper [26] as reference work with respect to the ap-

proach that we envision to advance.

3 Reinforcement learning problem
To exploit the advantages of learning-based staircase
traversal, we intend a reinforcement learning approach ap-
plied to flipper control. Two families of reinforcement
learning methods exist in robotics, the first one is the policy
search (PS) which learns the policy, and the second one is
value-based where one wishes to estimate the quality of the
value function in conformity with the expected cumulative
reward. PS [31] provides more advantages over the value-
based approach in robotics because the former allows ex-
pert knowledge integration, domain appropriate prestruc-
turing of the policy, and reduced complexity of policy ap-
proximation relative to value function approximation. Fi-
nally, small changes in policy do not consequently lead to
a large change in a value function and again in the policy
[17] like in value-based methods.

3.1 Problem description
We briefly recall associated RL notions following the de-
scription given in [19]. We denote the state of the robot
as x. The vector of control u ∈ Rd is generated by the
lower-level policy πl(u|x,ω) that is usually parameterized
with feedback controllers, movement primitives or torque
profiles [24, 19, 15] by ω ∈ Ωd where Ω is the space of
the lower-level policy parameters and d denotes the to-
tal number of degrees of freedom. We decouple policy
into the lower and upper-level policies in accordance with
[26, 20, 19]. The upper-level policy πu(ω|s) provides the
parametrizationω of the lower-level policy and can be gen-
eralized to different shapes of stairs. Let s the context con-
taining information about the environment such as number,
height and depth of steps has to be used in the upper-level
policy distribution in order enable the algorithm to choose
from different parametrization parameters ω according to
each context.
We consider an episode-based policy search framework
with length T. The trajectory τ = {x1, u1, ..,xT ,uT }
defines the set of state-action pairs. We assume that the
context vector s is drawn from an unknown distribution
µ(s) and our goal is to learn the optimal upper-level pol-
icy π∗

u(ω|s) which yields the parametrization of the lower-
level policy given the context s. The trajectory τ has the
probability p(τ |s,ω) given the context s and the reward
function R(τ , s) depends on the context. In the case of
staircase traversal it should further incorporate safety con-
straints, because the robot has to generate trajectories that
are as safe as possible, and potentially additional crite-
ria such as total travelled distance and platform slipping
that we estimate using the model proposed in [8]. During
learning N rollouts will be generated. In the beginning of
every episode the low level parameters ω are drawn from
the upper-level policy πu(ω|s) given the observed context,
then the control vector is retrieved from the lower-level pol-
icy πl(u|x,ω). Lately, the policy parameters are evaluated



on the simulated and real robot, the reward is collected and,
lastly, the policy is updated.
The problem formalization may directly serve for a stair
climbing learning. The lower-level policy is parametrized
by movement primitives whose parameters correspond to
the parameter vector ω of the upper-level policy. This pol-
icy defines the command vector u, which contains 6 ele-
ments which are 2 torques applied to tracks and 4 flipper
angles. The robot state x presents actual applied torques
to tracks, flipper angles, robot orientation and the position
on the stair. The context s comprises information about the
environment, e.g. size, number of steps and stair inclina-
tion. Every rollout generates a trajectory τ which has the
maximum length T.
Various PS methods can be applied to the described RL
problem. We consider that the relative entropy policy
search (REPS) algorithm family is the state-of-the-art [26]
which we seek to improve. In the next section, we briefly
describe algorithms that we have interested in and consider
to use as a baseline.

3.2 Policy Search algorithms
REPS. An interesting PS algorithm was developed in
[27] based on a conventional RL setting [31]. The REPS
keystone is simply the optimization problem where we at-
tempt to find optimal policies that maximize the expected
reward while satisfying constraints (cf. eq. 5 - 8 [27] ). It
binds the loss of information measured between observed
data distribution and the data distribution generated by the
new policy in order to prevent aggressive policy update
steps.

Contextual REPS. The authors of the Contextual REPS
[16] were inspired by the recent work [27], they add a task-
dependent context s, from which changing features of the
environment can be integrated. This also requires to divide
the policy into two levels. The lower-level policy is used
to generate control commands and typically parametrized
with a small number of parameters ω, controllers like lin-
ear feedback controllers, movement primitives [15], torque
profiles [24] or, even, neural network controllers, that are
harder to learn in comparison with others, are usually used
[19]. The high-level policy π(ω|s) searches for parame-
ters of the lower-level policy ω maximizing the expected
reward (cf. [16]). After sampling the parameter vector ω
from the high level-policy given the context s, the lower-
level policy π(u|x,ω) defines the control vector u dur-
ing the episode based the state x of the robot. Contextual
REPS searches over the joint distribution p(s,ω) of con-
texts and parameters to maximize the expected reward J
bounding the relative entropy to the previously observed
distribution q(s,ω). The Contextual REPS optimization
problem aims to maximize the expected reward J while
satisfying bounding constraints ( cf. eq. 6 [19]).

Gaussian Process REPS. The Contextual REPS is fur-
ther developed by the authors of [19]. Inspired by the re-
cent works [28, 20] they developped a model-based contex-

tual policy search algorithm named gaussian process rela-
tive entropy policy search (GPREPS) that learns a repre-
sentation of the robot dynamics and the reward function
giving equivalent learning results 100 times faster than the
original REPS. Its main motivation is to improve the data-
efficiency of the model-free REPS using artificial rollouts.
This algorithm simply adds a Gaussian Process (GP) in the
loop, which learns the representation of the system dynam-
ics. At each iteration of the GPREPS algorithm, N trajec-
tories are generated by observing the context and execut-
ing the policy on the real system, then the learned models
are updated and based on them M artificial samples are
created. In the following, the algorithm samples L trajec-
tories and averages over the trajectory rewards getting the
expected reward. Finally, these artificial samples are used
for optimization of the dual function by updating the upper-
level policy.

Constrained REPS. Another improvement is made in
[26] that extends the Contextual REPS algorithm with con-
straints and replaces the GP by a cautious physics-based
simulator, which evaluates generated policy in the safety
simulator, constrains the upper-level policy distribution re-
ducing the required number of iterations and generates safe
trajectories. It was made by extending the original Contex-
tual REPS constraints with an additional one. The upper-
level distribution p(s,ω) is forced to have the expected
safety higher then the vector of bounds δ:∑

s,ω

p(s,ω)(1−Csω) ≤ δ, (1)

whereCsω is a collection of evaluated quantities which are
safety and mechanical constraints, and 1 is a vector with
all-ones of a corresponding dimension. The optimization
problem of the Contextual REPS (cf. eq. 6 [19] ) is en-
riched only with one condition (cf. 1). As was shown in
[26] Constrained REPS takes about 40 iterations to learn
how to traverse previously unknown obstacles represented
by one step. Nonetheless, this is still overly high if we in-
tend to adress learning of unknown stair traversal during
the robot operation. Two possible extensions of this algo-
rithm concern learning of the expected return models along
with stronger prior knowledge on the policy structure than
a prior knowledge of physical limits.

4 Preliminary work
We consider the Jaguar V4 (Fig. 1, jaguar.drrobot.
com) as the experimental platform, designed for travers-
ing 3D terrain via its active components (flippers). As we
consider an indoor deployment of the robot, conventional
RGB-D sensors will be used for its situation awareness.
Low-level robot control is performed within Robot Op-
erating System (ROS) [29], while the robot is simulated
in the Gazebo environment (gazebosim.org). Prelim-
inary results concern perception as the achieved perfor-
mance of this stage will have an influence on all subsequent
stages related to learning and execution.

jaguar.drrobot.com
jaguar.drrobot.com
gazebosim.org


Figure 1: Jaguar V4

4.1 Perception
The main perception skill required by the robot is to de-
tect and estimate the state of a given staircase. Treating
the problem as a sequential estimation problem wherein the
robot observes the staircase from multiple viewpoints and
two sensor modalities (color (RGB) and depth), a Kalman
filter-based fusion scheme is applicable. At this point, we
assume that a preliminary algorithm enables the robot to
discriminate a staircase from other similar looking objects.

Staircase detection in the RGB image. We hereby as-
sume a right-handed image coordinate system. A stair-
case is initially detected in the RGB image following ideas
borrowed from [5] which consists in estimating a 2D line
for each step edge. In detail, the image is converted to
grayscale and undergoes erosion and dilation operations to
filter out small or noisy line segments. Subsequently, the
Canny edge detector together with Hough transform are
used to estimate the residual lines that do not intersect with
the 2D ground plane (see Fig. 2a) and extract the corre-
sponding line coefficients in 2D image plane. In order to
isolate lines corresponding to stairs, the algorithm operates
in Hough space where every line is represented by a point
(cf. Fig. 3) which coordinates correspond to slope and in-
tercept values of a line.
In example, we can distinguish a multitude of lines that
have been detected whose majority clusters around a sin-
gle line slope, that is assumed to correspond to the line
slope of the step edges of the staircase. To extract the lines
belonging to the steps of the staircase, the Hough space is
uniformly discritized along the slope axis into a fixed num-
ber of sections, each one corresponding to a histogram bar.
Counting in each histogram bin the total number of point
entries, we can thereby determine the dominant line.
Not surprisingly, Hough transform detects multiple line
segments with varying length along a step edge, so these
lines should be regrouped and filtered by length (cf Fig.
2a).
Regrouping could be done with respect to the fact that
segment lines of different step edges have the same slope
but different intercept values whereas lines from one step
edge have approximately the same intercept value. In order
to associate every small segment to corresponding edges,
points are grouped in the following way. If the distance be-
tween two consecutive points in Hough space is less than
the average distance between all consecutive points, these

(a) Dominant horizontal
lines obtained after applying

Hough transform

(b) Detected stair edges

Figure 2: Line and step detection

two points belong to one line, if not, this is the next step
edge. Grouped line segments are finally filtered by length,
so that short segments are discarded (Fig. 2b). Eventu-
ally, the coordinates of the staircase are obtained through
a bounding box in the RGB image that contains all the
grouped lines. These coordinates are then jointly consid-
ered with the estimated staircase coordinates obtained by
processing the Depth image.

Figure 3: Lines in Hough space

Staircase detection in the depth image. We begin by
extracting N uniformly spaced vertical depth profiles of
one pixel from this image starting from 0 X-axis position
(see Fig. 4a). Let pi,j be image pixels where i ∈ [1, .., w],
j ∈ [1, .., h], w and h are the image width and height.
Depth profile at horizontal position k is defined as dpk,j =
pi=k,j . Each depth profile is differentiated along itself and
inverted as it is presented in (2) where ∆j means distance
between j − 1 and j depth points (Fig. 4a), Hmax is the
maximum depth in cm.

dpdiffk,j =
Hmax

∆j
− dpk,j − dpk,j−1

∆j
(2)

Afterwards, we filter outliers in the differentiated profile
by eliminating points which do not have necessary num-
ber of neighbors in its vicinity. Finally, we apply the DB-
SCAN clustering algorithm [7] to the pre-filtered differ-
entiated profile and obtain clusters that correspond to dif-
ferent steps. Figure 4b illustrates clustering results where



(a)

(b)

Figure 4: (a) Depth profile at 160 px. (b) Differentiated,
filtered and clustered depth profile at 220 px (0

corresponds to the top and 400 to the bottom of the image)

different clusters are associated with different colors. Ac-
cordingly, every cluster is analyzed and individual steps are
distinguished from one another. Finally, the set of marked
profiles fully represents the stair region and the lower step
position (Fig. 5), we note that figure 5 visualizes the stair-
case in an uncommon way in order to increase contrast and
comprehensibility of the depth image. In this way, we can
obtain the position of the lowermost step which we choose
to assign as the reference pose of the entire staircase. More-
over, the normal vector to the front lowermost step surface
representing staircase orientation is calculated. Stair po-
sition on the 2D depth image is retrieved in the form of
bounding box and is fused with the results of the color im-
age stair detection algorithm. Finally, the staircase state pa-
rameters that are retained are the total number of steps, the
minimum, maximum and average step height and depth.
To retain these parameters, we obtain the point cloud in
the camera frame by transforming color and depth images
with calibration parameters. Knowing camera orientation
relatively to the main robot chassis and assuming that the
robot is in the vertical position along gravity, we transform
the point cloud coordinates from the camera frame to the
main robot coordinate frame. The step depth is simply
the mean distance between corresponding step edge point
depths. The height is the mean distance between corre-
sponding step edge points along gravity.
After obtaining two hypotheses on the presence of a stair-
case, one from RGB and the other from depth sensory data,
the final decision is based on the surface area overlap of
bounding boxes. The staircase estimation process contin-
ues by acquiring uniformly distributed observations in 2D
space, determined by the robot’s location.

Figure 5: Detected stair in depth image; the red box is the
stair related area

5 Future work
5.1 Navigation
We distinguish two mobility modes, namely, floor-based
and staircase-based modes. The former is used only in the
case of path execution on 2D surfaces. For this case, we
will employ ideas borrowed from [9] where commands are
continuously computed for track motors using the robot’s
kinematic model and flippers are raised up in order to
decrease friction. The latter mode is applied when the
robot faces the staircase. Switching between modes hap-
pens when the robot decides to traverse a staircase and ap-
proaches it at a certain distance (Fig. 6, transition state
1). When the mode changes to staircase traversal, motor
commands start being computed by the trained algorithm
(Fig. 6, transition states 2-4) and the robot returns to the
flat mode once the traversal is accomplished (Fig. 6, tran-
sition state 5).

Figure 6: Robot stair climbing

We consider that the robot may traverse stairs up and down.
When the robot finishes climbing, the robot saves its posi-
tion on the next floor as the staircase position. Staircase
descending is more challenging. Knowing staircase posi-
tion after climbing up, the robot will keep in mind its lo-
cation. Once the wished staircase position to descend is
approached, the robot turns to the stair-traversal mode, but
with another behaviour that should be learned as well as .
If the robot wishes to find an unknown stair to descend, we
will detect it as in [13] where authors use optical flow to
detect descending stairs and extract the leading stair edge.
Having a predominantly flat surface, we can rely on
state-of-the-art 2D Simultaneous Localization and Map-
ping (SLAM) such as the one proposed in [11]. Stairs will



be localized by the perception module with their position
associated to a certain location on the map as stated ear-
lier. There are two navigable types of surfaces, namely,
floor and stairs. We consider 2D SLAM, for the case when
the robot resides on a flat surface. Staircases will serve
as bridges shifting from one floor to another where the fi-
nal staircase position is hence continuously estimated by
using a Kalman filter. Eventually, this implies that we
expect multiple 2D floor maps that are interconnected by
staircases. The question arises about how the robot lo-
calizes itself while traversing a staircase. To address this
question we consider using triangulation with odometry
whereby regular patterns such as corner points could be
used as landmarks whose position is calculated from 3D in-
put depth data. To compensate for landmark disappearance
along traversal, the localization of the robot will further
rely on odometric data obtained either from the IMU or the
track encoders that should be sufficiently robust because of
small size of stairs and their regular shape. Once traversed,
the robot triggers a new 2D SLAM operation correspond-
ing to the level wherein the robot is situated.
To perform 2D path planning while navigating in floor-
mode, D* Lite algorithm presented in [18] was designed
to create optimal paths in dynamic scenarios by focusing
replanning on the affected area. It is an incremental heuris-
tic search algorithm based on the Lifelong Planning A*. It
allows to plan paths on the occuppancy grid maps in rea-
sonbale time and to avoid dynamic obstacles recalculating
only influenced parts of the map graph. Like A* and LPA*,
D* Lite uses a heuristic, that limits the cost of the path from
a given node to the start. We refer the reader to the orig-
inal paper [18] for more details and its pseudocode. Two
flat maps connect each other by a node representing stair,
hence, path planning problem is conveniently addressed in
a lower-dimensional state space. The robot will have a
module that tracks stair position and, if it decides to tra-
verse stairs, the robot switches between flat surface move-
ment mode and staircase movement mode.

5.2 Reinforcement learning-based control

Algorithms from section 3.2 may be used in application
to different robotic problems. They were mostly tested in
activities such as hockey [20], stair traversal [26] or table
tennis [28, 19] where they showed results for the safety
constraints and learning time. Thus, this renders this al-
gorithm family particularly attractive in the case of stair
traversal in order to accommodate the need for safe actions
and learning in a handful of trials.
The future work comprises elaboration of Constrained
REPS algorithm proposed in [26]. First, it demands a rea-
sonably small amount of needed iterations to learn how to
traverse a previously unknown obstacle. Second, its cau-
tious physics-based simulator is important for applications
in assistive robotics where we wish to avoid any damage
of the environment and the robot. Lastly, being based on
the Contextual REPS, the Constrained REPS enables the

robot to use the context which corresponds to different,
even not seen before, situations that would be new stair ge-
ometries. In our case, the context relating to staircase con-
figurations will be employed and safety constraints will be
implemented using a safety simulator, finally, results will
be compared.
The GPREPS learns the robot dynamics finally decreasing
the total amount of required real robot trials, however, this
dynamics corresponds only to one robot configuration. The
Constrained REPS does not use the Gaussian Process be-
cause, as authors say, it is difficult to provide guarantees
of the safety of the generated trajectories based on data-
driven models without any prior knowledge about underly-
ing physics. The cautious physics-based simulator should
be used to overcome this limitation. Nevertheless, it was
shown that model-based approaches are more promising
for learning in a handful of trials [2]. The GPREPS and
the Constrained REPS have not yet been compared and the
latter was not applied to different contexts which motivates
our interest for further investigation. It should be possible
to fuse these two algorithms to exploit the advantages of
each of them and seek an implementation with more com-
plex constraints.
Wishing to decrease the need of human expertise, we also
desire to transfer the learned robot dynamics to different
robot configurations of the spatial shape. It appears that
knowledge about the robot’s configuration could be added
into the context vector or, possibly, it should learn its ge-
ometry using sensorimotor invariants as proposed in [21].
The next step concerns robotic arm integration. It will in-
fluence robot dynamics by translation of the mass center,
therefore it has to be taken into account in the context vec-
tor and reward function. At the same time, the robot could
move its arm improving capability of staircase traversal
with respect to safety constraints, such movements should
be also received like output of the lower-level policy. The
last intention is to enable the robot to execute learning dur-
ing operation in the real world in a handful of following the
example of [3].

6 Conclusion
This paper presents the problem addressed in the con-
text of a doctoral thesis, associated preliminary develop-
ments and workplan along with whose goal is to pro-
vide a tracked robot capable of safe navigation in 3D in-
door environments. Contemporary robotic solutions of
tracked robot stair climbing were presented and propos-
als for advancing the state-of-the-art were considered.
Two main perspectives can be distinguished for addressing
this problem. Relatedly, most contemporary approaches
rely on over-customized solutions with poor generaliza-
tion to different contexts. As an alternative, we advocate
a reinforcement-learning, policy search based approach to
reduce the amount of expert supervision and allow more
flexibility to varying conditions. Subsequent work con-
cerns development and evaluation of these modules in real-



istic conditions, system integration and scaling up learning
complexity as the result of inclusion of the robotic arm.
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