HAL will be down for maintenance from Friday, June 10 at 4pm through Monday, June 13 at 9am. More information
Skip to Main content Skip to Navigation
Conference papers

Learning Generalized Quasi-Geostrophic Models Using Deep Neural Numerical Models

Redouane Lguensat 1 Julien Le Sommer 1 Sammy Metref 1 Emmanuel Cosme 1 Ronan Fablet 2, 3
2 Lab-STICC_IMTA_CID_TOMS
Lab-STICC - Laboratoire des sciences et techniques de l'information, de la communication et de la connaissance
Complete list of metadata

Cited literature [26 references]  Display  Hide  Download

https://hal-imt-atlantique.archives-ouvertes.fr/hal-02366600
Contributor : Ronan Fablet Connect in order to contact the contributor
Submitted on : Saturday, November 16, 2019 - 8:50:32 AM
Last modification on : Monday, April 4, 2022 - 9:28:20 AM
Long-term archiving on: : Monday, February 17, 2020 - 12:57:42 PM

File

NeurIPS_ML4PS_2019_109.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-02366600, version 1

Citation

Redouane Lguensat, Julien Le Sommer, Sammy Metref, Emmanuel Cosme, Ronan Fablet. Learning Generalized Quasi-Geostrophic Models Using Deep Neural Numerical Models. NeurIPS 2019 : 33rd Conference on Neural Information Processing Systems, Dec 2019, Vancouver, Canada. ⟨hal-02366600⟩

Share

Metrics

Record views

38

Files downloads

85