EMMI Rapid Reaction Task Force
GSI, 18-22 July 2016

Microscopic Models of Energy Loss and transport coefficients:
The Nantes Approach

Pol B Gossiaux, M. Nahrgang, J. Aichelin, K. Werner
Motivation and context

- Most of the *interesting* HF observables so far: located at *intermediate* p_T
 (≈ 3 GeV-50 GeV)

- Intermediate p_T: hope that pQCD (or pQCD inspired models) apply (as compared to low p_T)

- Intermediate p_T: mass effect still present and thus hope to learn something more as compared to large p_T

Low (Energy conservation under control)

- Braaten-Thoma + Gunion- Bertsch
 \approx Bethe-Bloch + Bethe-Heitler

Intermediate

Coherence effects

High (coherence under control)

- Finite E + finite mass corrections

BDMPS-Z, DGLV, ASW, …
 \approx LPM

Approach pursued in our **models**… Unfortunately too many of them

=>$\text{Need for falsification (more observables; IQCD): Azimuthal correlations?}$
Starting from Combridge (79) as a basis:

$$\sum |M|^2 = \frac{64 \pi^2 \alpha^2(q^2)}{q} \frac{(M^2 - u)^2 + (s - M^2)^2 + 2 M^2 t}{t^2}$$

$$\sum |M|^2 = \pi^2 \alpha^2(q^2) \left[\frac{32 (s - M^2)(M^2 - u)}{t^2} + \frac{64 (s - M^2)(M^2 - u) + 2 M^2 (s - M^2)}{q} \frac{(s - M^2)^2}{(s - M^2)^2} \right]$$

$$\quad + \frac{64}{q} \frac{(s - M^2)(M^2 - u) + 2 M^2 (M^2 - u)}{(M^2 - u)^2} + \frac{16}{q} \frac{M^2 (4 M^2 - t)}{(s - M^2)(M^2 - u)}$$

$$\quad + \frac{16}{q} \frac{(s - M^2)(M^2 - u) + M^2 (s - u)}{t (s - M^2)} - \frac{16}{q} \frac{(s - M^2)(M^2 - u) - M^2 (s - u)}{t (M^2 - u)} \right]$$

However, t-channel is IR divergent => model S
Naïve regulating of IR divergence:

\[
\frac{1}{t} \quad \rightarrow \quad \frac{1}{t - \mu^2}
\]

With \(\mu(T)\) or \(\mu(t)\)

Models A/B: 2 customary choices

\[
\mu^2(T) = m_D^2 = 4\pi \alpha_s(1+3/6)\lambda T^2
\]

\[
\alpha_s(Q^2) \rightarrow \begin{cases} 0.3 \text{ (mod A)} \\ \alpha_s(2\pi T) \text{ (mod B)} \approx 0.3 \end{cases}
\]

(Svetitsky: 0.5; equil time of 1fm/c) !!!

\[
\begin{array}{|c|c|c|}
\hline
\text{T (MeV)} & \text{p (GeV/c)} & 10 & 20 \\
\hline
200 & 0.18 & 0.27 \\
400 & 0.35 & 0.54 \\
\hline
\end{array}
\]

\[dx \]

... of the order of a few %!

OBE model, NOT pQCD at finite T !!!
Educated: Calibrating on HTL…

permits to fix the effective mass μ
Heavy fermion of mass M probes the medium via virtual fermion of momentum q.

Region I: $q > q^*$: hard; close collisions; individual; incoherent.

Region II: $q < q^*$: soft; far collisions; collective; coherent; macroscopic.

Relying on the smallness of the coupling constant $\frac{T e T}{r D} \approx \frac{1}{e^2 T}$, we have:

$$\frac{1}{M} \ll r = \frac{1}{T} \ll \frac{1}{q^*} \ll r_D \approx \frac{1}{e T} \ll \lambda \approx \frac{1}{e^2 T}$$

Debye radius r_D.
Braaten-Thoma:
(Peshier – Peigné)

Low $|t|$: large distances

HTL: collective modes

$$G_{\mu\nu}(Q) = \frac{-\delta_{\mu0}\delta_{\nu0}}{q^2 + \Pi_{00}} + \frac{\delta_{ij} - \hat{q}_i \hat{q}_j}{q^2 - \omega^2 + \Pi_T}$$

$$\frac{dE_{soft}}{dx} = \frac{2}{3} \alpha m_D^2 \ln \left(\frac{\sqrt{t^*}}{m_D / \sqrt{3}} \right) + \ldots$$

SUM: $$\frac{dE}{dx} = \frac{2}{3} \alpha m_D^2 \ln \left(\frac{\sqrt{ET}}{m_D / \sqrt{3}} \right)$$

HTL: convergent kinetic
(matching 2 regions)

$$|t^*|$$

Large $|t|$: close coll.

$$G_{\mu\nu}(Q) = \frac{-\delta_{\mu\nu}}{q^2 - \omega^2}$$

$$\frac{dE_{hard}}{dx} = \frac{2}{3} \alpha m_D^2 \ln \left(\frac{\sqrt{ET}}{\sqrt{t^*}} \right) + \ldots$$

Indep. of $|t^*|$!

(provided $g^2 T^2 \ll |t^*| \ll T^2$)
In QGP: $g^2 T^2 > T^2$!!!

BT: Not Indep. of $|t^*|$!

Our solution: Introduce a semi-hard propagator -- $1/(t-v^2)$ -- for $|t| > |t^*|$ to attenuate the discontinuities at t^* in BT approach.

Prescription: v^2 in the semi-hard prop. is chosen such that the resulting E loss is maximally $|t^*|$-independent.

This allows a matching at a natural value of $|t^*| \approx T$... Not an increase wrt Braaten-Thoma.
Model C: optimal μ^2

THEN: Optimal choice of μ in our OBE model:

\[
\frac{\alpha_s(2\pi T)}{t - \mu^2} \mu^2(T) = \kappa m_D^2(T)
\]

With $\kappa \approx 0.15$

with $m_D^2 = 4\pi\alpha_s(2\pi T)(1+3/6)xT^2$

\[
dE_{coll}(c) \frac{dx}{dx} \text{ ... factor 2 increase w.r.t. mod B (not enough to explain } R_{AA}\text{)}
\]

Convergence with “pQCD” at high T

<table>
<thead>
<tr>
<th>T(MeV) \ p(GeV/c)</th>
<th>10</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>0.36 (0.18)</td>
<td>0.49 (0.27)</td>
</tr>
<tr>
<td>400</td>
<td>0.70 (0.35)</td>
<td>0.98 (0.54)</td>
</tr>
</tbody>
</table>
Refined: *running coupling constant*

Motivation: Even a fast parton with the largest momentum P will undergo collisions with moderate q exchange and large $\alpha_s(Q^2)$. The running aspect of the coupling constant has been “forgotten/neglected” in most of approaches.

Open question: long range behaviour and renormalisation at finite temperature
A Peshier: α_S not fixed at the right scale

Running of α_S (Peshier 06) in collisional E loss

Usually

$$\frac{dE_j}{dx} = \sum_s \int_{k^3} \rho_s(k) \Phi \int dt \frac{d\sigma_{js}}{dt} \omega$$

with

$$\Phi \int_{t_1}^{t_2} dt \frac{d\sigma_{js}}{dt} \omega = \pi C_{js} \alpha^2 \int_{t_1}^{t_2} \frac{dt}{t} = \frac{\pi C_{js} \alpha^2}{k} \ln \frac{t_1}{t_2}$$

Doing it more cautiously

$$\Phi \int_{t_1}^{t_2} dt \frac{d\sigma_{js}}{dt} \omega = \frac{\pi C_{js}}{k b_0^2} \int_{t_1}^{t_2} \frac{dt}{t \ln^2(|t|/\Lambda^2)} = \frac{\pi C_{js}}{k b_0^2} \ln \left(\frac{|t_2|}{\Lambda^2}\right) - \frac{\pi C_{js}}{k b_0^2} \ln \left(\frac{|t_1|}{\Lambda^2}\right)$$

Dominated by the soft scale

No log(E) increase. UV conv. for $t_1 \to \infty$

Softer scale \Rightarrow larger E loss !!!

"In fact, σ with running coupling … an order of magnitude larger than expected from the widely used expression $\sigma_{\alpha \text{fix}} \propto \alpha^2(Q^2T)/\mu^2$. Thus, the present approach gives a consistent and simple explanation of phenomenologically inferred large cross sections found in transport models."
IR safe. The detailed form very close to $Q^2 = 0$ is not important does not contribute to the energy loss. Large values for intermediate momentum-transfer => larger cross section.

Of course, still a lot of uncertainties in the choice of this essential quantity !!!
μ-local-model: medium effects at finite T in t-channel

Large $|t|$:

- $\alpha_{\text{eff}}(Q^2, T=0)$
- $|t^*|$ (Max. insensitivity)

Low $|t|$:

- HTL: collective modes

Semi-hard

$$\frac{\alpha_{\text{eff}}(t)}{t - \lambda m_D^2(T, t)}$$

$\lambda = 0.11$

OGE with effective polarisation

$$\mu^2(T) = 0.2 \ m_{\text{Dself}}^2(T)$$

$$m_{\text{Dself}}^2(T) = (1+n_f/6) \ 4\pi\alpha_{\text{eff}}(m_{\text{Dself}}^2) \ T^2$$

Bona Fide running HTL:

$\alpha_s \rightarrow \alpha_s(t)$ in Π_L and Π_T
Drag coefficient A ($\langle d\langle p\rangle/dt \rangle$)

At large p: moderate mass dependence

<table>
<thead>
<tr>
<th>α_s</th>
<th>μ^2</th>
<th>Line form</th>
<th>Line color</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.3</td>
<td>m_D^2</td>
<td>Dotted thin</td>
</tr>
<tr>
<td>B</td>
<td>$\alpha_s(2\pi T)$</td>
<td>m_D^2</td>
<td>Dashed thin</td>
</tr>
<tr>
<td>C</td>
<td>$\alpha_s(2\pi T)$</td>
<td>0.15m_D^2</td>
<td>Full thin</td>
</tr>
<tr>
<td>D</td>
<td>Running, Eq. (17)</td>
<td>\tilde{m}_D^2</td>
<td>Dashed bold</td>
</tr>
<tr>
<td>E</td>
<td>Running, Eq. (17)</td>
<td>0.2\tilde{m}_D^2</td>
<td>Full bold</td>
</tr>
<tr>
<td>F</td>
<td>Running, Eq. (17)</td>
<td>$0.11(6\pi \alpha_{\text{eff}}(1) T^2)$</td>
<td>Dashed dotted bold</td>
</tr>
</tbody>
</table>
μ-local-model: Eff. Running α_s vs lQCD

$T=0$

$\alpha_{qq}(r) \equiv \frac{3}{4} r^2 \frac{dV(r)}{dr}$

O. Kaczmarek & F. Zantow (KZ) (n$_f$=2 QCD), P.R.D71 (2005) 114510

Genuine non-pert (string)

optimal μ, running α_{eff}

V:$\omega=0$ sector; dE/dx: finite ω

Finite T

T\approx1.1 T_c

$\frac{dV}{dr}$ [GeV/fm]

T\approx1.5 T_c

$\frac{dV}{dr}$ [GeV/fm]

Merging at \approx2 T_c

Some overshooting at large distance

KZ P.R. D71 (2005)

Differential cross sections

Qq → Qq

- \(\frac{d\sigma_{q\bar{q}\rightarrow q\bar{q}}}{dt} \) (a.u.)
- Large enhancement of both cross sections at small and intermediate \(|t|\)
- Little change at large \(|t|\)

\(\alpha(2\pi T), \mu = m_D \)

\(\mu^2(t) = 0.11 + 6\pi \alpha(t) T^2 \)

Qg → Qg

- \(\frac{d\sigma_{g\bar{g}\rightarrow g\bar{g}}}{dt} \) (a.u.)
- "standard"

\(\alpha(2\pi T), \mu = m_D \)

\(\mu^2(t) = 0.11 + 6\pi \alpha(t) T^2 \)

\(\mu^2 = m_D^2 \quad \text{\&} \quad \mu^2 = m_D^2 \text{self}(T) \)
\(\mu \)-local-model: Eff. Running vs fixed \(\alpha_s \)

Good agreement with PP for large \(T \) and large \(P \)

Running \(\alpha_s \) is more than a cranking of BT (different shapes and \(T \)-dependences)

Conclusions:
Running α_s : some Energy-Loss values

\[\frac{dE_{\text{coll}}(c/b)}{dx} \]

<table>
<thead>
<tr>
<th>$T(\text{MeV}) \ \backslash p(\text{GeV/c})$</th>
<th>10</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>1 / 0.65</td>
<td>1.2 / 0.9</td>
</tr>
<tr>
<td>400</td>
<td>2.1 / 1.4</td>
<td>2.4 / 2</td>
</tr>
</tbody>
</table>

\[\approx 10\% \text{ of HQ energy} \]

Drag coefficient

E: optimal μ, running α_{eff}
C: optimal μ, $\alpha_s(2\pi T)$

Transp. Coef ...

... of expected magnitude to reproduce the data (we “explain” the transp. Coeff. in a rather parameter free approach).
Several issues

1. Non perturbative aspects (beyond Born). Usually in convergent kinetic:

\[\text{RPA} + \prod \cdot \cdot \cdot \]

Ladders necessary at short distance (large force)
Several issues

2. λ at small momentum?

Reduction of the interaction range

$\lambda = 0.11$

$T = 0.2, 0.3 \& 0.4 \text{ GeV} \quad N_f = 3 \quad M = 1.5 \& 5 \text{ GeV}$

$\nu^2/m_D^{2\text{eff}}$ vs $\frac{dP}{dx}$

$A(\text{GeV/fm})$ vs $p(\text{GeV/c})$

c–quarks

$T = 0.4 \text{ GeV}$

$\lambda = 0.11$

fixed at $\alpha_s(2\pi T)$

λ_{opt}

b–quarks

$T = 0.4 \text{ GeV}$

$\lambda = 0.11$

fixed at $\alpha_s(2\pi T)$

λ_{opt}
Several issues

3. How to deal with the genuinely NP part?
Transport coefficients (1)

Only the elastic contribution
Gathering all rescaled models (coll. and radiative) compatible with RHIC R_{AA}:

The drag coefficient reflects the average momentum loss (per unit time) => large weight on $x \sim 1$

For too large p_T, L^2 terms dominate => transport coefficients are not the relevant objects
Gathering all rescaled models (various prescriptions for μ and α_s):

AdS/CFT too large to reproduce experimental data?! Against the conclusion of Akamatsu et al (?)

(E-loss plays a dominant role, but not the only parameter)
comparer avec hirano et al qui parviendraient à reproduire le RAA
The Monte Carlo @ Heavy Quark Generator

No force on HQ before thermalization of QGP (0.6 fm/c)

Evolution according to Bjorken time

Preequilibrium

Quarkonia formation in QGP through c+c→Ψ+g fusion process

(hard) production of heavy quarks in initial NN collisions (NLO or FONLL or any pp generator + k_T broad. (0.2 GeV^2/coll)

\[\frac{1}{2\pi} \frac{d\sigma}{dp_T} (\text{mb/GeV}^2) \]

HQ Lectures Nantes
The Monte Carlo @ Heavy Quark Generator

Bulk Evolution: non-viscous hydro (Heinz & Kolb) → T(M) & v(M)

Evolution of HQ in bulk: Fokker-Planck or reaction rate + Boltzmann (no hadronic phase)

Recently: coupling to EPOS2 (3) instead of KH

HQ Lectures Nantes
D/B formation at the boundary of QGP (or MP) through coalescence of c/b and light quark (low p_T) or fragmentation (high p_T)

Bulk Evolution: non-viscous hydro (Heinz & Kolb) $\rightarrow T(M)$ & $v(M)$

Evolution of HQ in bulk: Fokker-Planck or reaction rate + Boltzmann (no hadronic phase)

Nothing spectacular at freeze-out (quarkonia are white objects already)
Boltzmann vs Langevin

Deviation from Einstein relation with native coefficients

\[f_{\text{asympt}}(\varphi) \]

\[f_{\text{asympt}}(\varphi)/e^{-\varphi} \]

\[|M_{\text{grazing}}(s, t, \mu; \nu)|^2 = \frac{(s - m^2)^2 \mu^{4(\nu-1)}}{(\mu^2 - t)^{2\nu}} \]

\[\varphi = \frac{E - 8m_c}{T} \]
Boltzmann vs Langevin

2 corrections prescriptions:

- **VHR:** \(B_L^{\text{therm VHR}}(p) = E_p T A / p \)

- **Gossiaux (historical)**
 \[
 \frac{B_L^{\text{therm}}(p)}{B_T^{\text{therm}}(p)} = \left(\frac{B_L(p)}{B_T(p)} \right)^\beta
 \]
 \(\beta = 0.25 \)

![Graph showing the comparison between different models]
Boltzmann vs Langevin

\[\langle p_z \rangle \text{(GeV/c)} \]

- **Boltzmann**
- **FP native**
- **FP therm Gossiaux**
- **FP therm VH&H**

\(T = 300 \text{MeV} \)
Boltzmann vs Langevin

\[\sigma(p_z)(\text{GeV/c}) \]

- Boltzmann
- FP
- FP therm
- FP therm VH&R

\[p_{\text{in}} = 20\text{GeV/c} \]

\[T = 300\text{MeV} \]

\[\sigma(p_{\perp})(\text{GeV/c}) \]

- Boltzmann
- FP
- FP therm
- FP therm VH&R

\[p_{\text{in}} = 20\text{GeV/c} \]

\[T = 300\text{MeV} \]

\[\sigma(p_T)(\text{GeV/c}) \]

- Boltzmann
- FP
- FP therm
- FP therm VH&R

\[\text{pp-LHC} \]

\[\text{pp-RHIC} \]

\[T = 400\text{MeV} \]

\[T = 300\text{MeV} \]

Just drag
Boltzmann vs Langevin

Evolution in a finite T stationary medium (infinite)

Both tuned FP ok,… Native FP has less RAA (more longitudinal fluctuations dating from Einstein violation)
Induced Energy Loss

Generalized Gunion-Bertsch (NO COHERENCE) for finite HQ mass, dynamical light partons

Eikonal limit (large \(E \), moderate \(q \))

\[
\omega \frac{d^3 \sigma_{\text{rad}}^{x \ll 1}}{d\omega d^2 k_\perp dq_\perp} = \frac{N_c \alpha_s}{\pi^2} (1 - x) \times \frac{J_{\text{QCD}}^2}{\omega^2} \times \frac{d\sigma_{\text{el}}^{Qq}}{dq_\perp^2}
\]

with

\[
\frac{J_{\text{QCD}}^2}{\omega^2} = \left(\frac{-k_\perp}{k_\perp^2 + x^2 M^2 + (1 - x)m_g^2} - \frac{\tilde{k}_\perp - \tilde{q}_\perp}{(\tilde{k}_\perp - \tilde{q}_\perp)^2 + x^2 M^2 + (1 - x)m_g^2} \right)^2
\]

Gluon thermal mass \(\sim 2T \) (phenomenological; not in BDMPS)

Quark mass

Both cures the collinear divergences and influence the radiation spectra (dead cone effect)

Dominates as small \(x \) as one "just" has to scatter off the virtual gluon \(k' \)
Incoherent Induced Energy Loss

… & finite energy!

Finite energy lead to strong reduction of the radiative energy loss at intermediate p_T

Formation time for a single coll.

At 0 deflection:

\[t_f \approx \frac{2(1-x)\omega}{(k_\perp - q_\perp)^2 + x^2 M^2 + (1-x)m_g^2} \]

For \(x > x_{cr} = m_g / M \), gluons radiated from heavy quarks are resolved in less time than those light quarks and gluon radiation process less affected by coherence effects in multiple scattering.

For \(x < x_{cr} = m_g / M \), basically no mass effect in gluon radiation.

Dominant region for quenching

Dominant region for average E loss

\[l_{f,\text{sing}} \approx \frac{2x(1-x)E}{m_g^2 + x^2 M^2} \]
A first criteria

Comparing the formation time (on a single scatterer) with the mean free path:

\[\lambda(T) \]

Coherence effect for HQ gluon radiation:

\[\frac{E}{M} \gtrsim m_g \lambda_Q \sim \frac{1}{g_s} \]

Maybe not completely foolish to neglect coherence effect in a first round for HQ.

(of course depends on the physics behind \(\lambda_Q \))

Mostly coherent

Mostly uncoherent

RHIC

LHC

(will provide at least a maximal value for the quenching)
Our basic ingredients for HQ energy loss

Coherent Induced Radiative

Formation time picture: for $l_{f,mult} > \lambda$, gluon is radiated coherently on a distance $l_{f,mult}$

Model: all N_{coh} scatterers act as a single effective one with probability $p_{Ncoh}(Q_{\perp})$ obtained by convoluting individual probability of kicks

$$\frac{d^2 I_{eff}}{dz d\omega} \sim \frac{\alpha_s}{N_{coh} \bar{\lambda}} \ln \left(1 + \frac{N_{coh} \mu^2}{3 (m_g^2 + x^2 M^2 + \sqrt{\omega q})} \right)$$

[arXiv:1209.0844] (Hard Probes 2012)
Monte Carlo Implementation (rad)

I) For each collision with a given q_\perp, we define the conditional probability of radiation:

$$r(q_\perp) := \int_0^\infty \frac{d^2\sigma_{\text{rad}}}{d\omega dq_\perp^2} d\omega$$

In practice, $\omega_{\text{min}} = 5\%$ E to avoid IR catastrophe

II) For each collision with a given invariant mass squared s, we define the conditional total probability of radiation:

$$\tilde{r}(s) = \frac{\sigma_{\text{rad}}}{\sigma_{\text{el}}} \approx \frac{\int_{-|t|_{\text{max}}}^0 r(\sqrt{-t}) \frac{d\sigma_{\text{el}}^Q q(t)}{dt} dt}{\int_{-|t|_{\text{max}}}^0 \frac{d\sigma_{\text{el}}^Q q(t)}{dt} dt}$$

Probes the elastic cross section at larger values of t => less sensitive to α_{eff} at small t-values

Threshold for radiation

HQ Lectures Nantes
III) For a given HQ energy E, we sample the entrance channel according to the thermal distribution of light quarks and gluons and $\sigma_{el}(s)$ and accept according to the conditional probability $\tilde{r}(s)$.

IV) We sample “downwards” q_\perp, ω and then k_\perp.

Hard shocks with $|t|>25\%$ s are rejected (not treated properly in our formalism).

V) $P^+ \rightarrow (1-x) P^+$ and transverse kick of $q_\perp - k_\perp$.

Fixed α_s Approximation:

In “reality”, several collisions at intermediate t-values accumulate.

VI) Reject if out of phase-space.