J. Adler and O. Öktem, Solving ill-posed inverse problems using iterative deep neural networks, Inv. Pr, vol.33, issue.12, p.124007, 2017.

L. Alvarez, F. Guichard, P. Lions, and J. Morel, Axioms and fundamental equations of image processing, Arch. Rat. Mech. An, vol.123, issue.3, pp.199-257, 1993.

M. Andrychowicz, M. Denil, S. Gomez, M. W. Hoffman, D. Pfau et al., Learning to learn by gradient descent by gradient descent, NeurIPS, pp.3981-3989, 2016.

S. Arridge, P. Maass, O. Öktem, and C. Schönlieb, Solving inverse problems using data-driven models, Act. Num, vol.28, pp.1-174, 2019.

G. Aubert and P. Kornprobst, Mathematical problems in image processing: partial differential equations and the calculus of variations, vol.147, 2006.

J. Blum, F. Dimet, and M. I. Navon, Data assimilation for geophysical fluids, In Handbook Num. An, vol.14, pp.385-441, 2009.
URL : https://hal.archives-ouvertes.fr/inria-00391892

E. J. Candes and Y. Plan, Matrix Completion With Noise, Proc. IEEE, vol.98, pp.925-936, 2010.

T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud, Neural Ordinary Differential Equations, NeurIPS, pp.6571-6583, 2018.

Y. Chen, W. Yu, and T. Pock, On Learning Optimized Reaction Diffusion Processes for Effective Image Restoration, pp.5261-5269, 2015.

Q. Cheng, H. Shen, L. Zhang, and P. Li, Inpainting for Remotely Sensed Images With a Multichannel Nonlocal Total Variation Model, IEEE TGRS, vol.52, issue.1, pp.175-187, 2014.

J. R. Dormand and P. J. Prince, A family of embedded Runge-Kutta formulae, J. Comp. App. Math, vol.6, issue.1, pp.19-26, 1980.

M. Elad and M. Aharon, Image denoising via sparse and redundant representations over learned dictionaries, IEEE TIP, vol.15, issue.12, pp.3736-3745, 2006.

R. Fablet, L. Drumetz, and F. Rousseau, End-to-end learning of optimal interpolators for geophysical dynamics, Climate Informatics, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02285701

R. Fablet, S. Ouala, and C. Herzet, Bilinear residual Neural Network for the identification and forecasting of dynamical systems, In EUSIPCO, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01686766

L. Franceschi, P. Frasconi, S. Salzo, R. Grazzi, and M. Pontil, Bilevel programming for hyperparameter optimization and meta-learning, 2018.

D. Geman, Random fields and inverse problems in imaging, LNM, vol.1427, pp.113-193, 1990.

G. Holler, K. Kunisch, and R. Barnard, A bilevel approach for parameter learning in inverse problems, Inv. Pr, vol.34, issue.11, p.115012, 2018.

T. Hospedales, A. Antoniou, P. Micaelli, and A. Storkey, Meta-learning in neural networks: A survey, 2020.

G. Liu, F. A. Reda, K. J. Shih, T. C. Wang, A. Tao et al., Image Inpainting for Irregular Holes Using Partial Convolutions, ECCV, pp.85-100, 2018.

R. Liu, L. Ma, X. Yuan, S. Zeng, and J. Zhang, Bilevel Integrative Optimization for Ill-posed Inverse Problems, 2019.

A. Lucas, M. Iliadis, R. Molina, and A. Katsaggelos, Using deep neural networks for inverse problems in imaging: beyond analytical methods, IEEE SPM, vol.35, issue.1, pp.20-36, 2018.

S. Lunz, O. Öktem, and C. Schönlieb, Adversarial regularizers in inverse problems, NeurIPS, pp.8507-8516, 2018.

J. Mairal, F. Bach, J. Ponce, and G. Sapiro, Online dictionary learning for sparse coding, ICML, pp.689-696, 2009.

M. T. Mccann, K. H. Jin, and M. Unser, Convolutional neural networks for inverse problems in imaging: A review, IEEE SPM, vol.34, pp.85-95, 2017.

T. Meinhardt, M. Moller, C. Hazirbas, and D. Cremers, Learning proximal operators: Using denoising networks for regularizing inverse imaging problems, CVPR, pp.1781-1790, 2017.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion et al., Scikit-learn: Machine learning in Python, JMLR, vol.12, pp.2825-2830, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00650905

P. Perez, Markov random fields and images. CWI Quart, 1998.

M. Raissi, P. Perdikaris, and G. E. Karniadakis, Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, JCP, vol.378, pp.686-707, 2019.

J. H. Chang, C. Li, B. Poczos, B. V. Vijaya-kumar, and A. C. Sankaranarayanan, One network to solve them all-solving linear inverse problems using deep projection models, ICCV, pp.5888-5897, 2017.

E. K. Ryu, J. Liu, S. Wang, X. Chen, Z. Wang et al., Plug-and-play methods provably converge with properly trained denoisers, 2019.

S. V. Venkatakrishnan, C. A. Bouman, and B. Wohlberg, Plug-and-play priors for model based reconstruction, IEEE GlobalSIP, pp.945-948, 2013.

J. Xie, L. Xu, and E. Chen, Image Denoising and Inpainting with Deep Neural Networks, NIPS, pp.341-349, 2012.

J. Xie, L. Xu, and E. Chen, Deep ADMM-Net for Compressive Sensing MRI, NIPS, pp.10-18, 2016.