M. Andrychowicz, M. Denil, S. Gomez, M. W. Hoffman, D. Pfau et al., Learning to learn by gradient descent by gradient descent, NIPS, pp.3981-3989, 2016.

R. N. Bannister, A review of operational methods of variational and ensemble-variational data assimilation, QJRMS, vol.143, issue.703, pp.607-633, 2017.

E. L. Blayo, Reduced order approaches for variational data assimilation in oceanography, Proc. 2nd Int. Workshop on Industrial applications of low order model based on POD, 2008.
URL : https://hal.archives-ouvertes.fr/inria-00344504

J. Blum, F. Dimet, and . Michael-navon, Data assimilation for geophysical fluids, Handbook of numerical analysis, vol.14, pp.385-441, 2009.
URL : https://hal.archives-ouvertes.fr/inria-00391892

M. Bocquet, J. Brajard, A. Carrassi, and L. Bertino, Bayesian inference of chaotic dynamics by merging data assimilation, machine learning and expectation-maximization, Foundations of Data Science, vol.2, issue.1, pp.55-80, 2020.

S. L. Brunton, J. L. Proctor, and J. N. Kutz, Discovering governing equations from data by sparse identification of nonlinear dynamical systems, PNAS, vol.113, issue.15, pp.3932-3937, 2016.

M. Busta, L. Neumann, and J. Matas, Deep TextSpotter: An End-To-End Trainable Scene Text Localization and Recognition Framework, Proc. IEEE CVPR, pp.2204-2212, 2017.

K. Champion, B. Lusch, J. N. Kutz, and S. L. Brunton, Data-driven discovery of coordinates and governing equations, vol.116, pp.22445-22451, 2019.

T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud, Neural Ordinary Differential Equations, NIPS, pp.6571-6583, 2018.

Y. Chen, W. Yu, and T. Pock, On Learning Optimized Reaction Diffusion Processes for Effective Image Restoration, Proc. IEEE CVPR, pp.5261-5269, 2015.

S. Dieleman and B. Schrauwen, End-to-end learning for music audio, IEEE ICASSP, pp.6964-6968, 2014.

J. R. Dormand and P. J. Prince, A family of embedded Runge-Kutta formulae, Journal of Computational and Applied Mathematics, vol.6, issue.1, pp.19-26, 1980.

G. Evensen, Data Assimilation, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00229825

R. Fablet, L. Drumetz, and F. Rousseau, End-to-end learning of energy-based representations for irregularlysampled signals and images, 2019.

R. Fablet, S. Ouala, and C. Herzet, Bilinear residual Neural Network for the identification and forecasting of dynamical systems, In EUSIPCO, pp.1-5, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01686766

K. He, X. Zhang, S. Ren, and J. Sun, Deep Residual Learning for Image Recognition, IEEE CVPR, pp.770-778, 2016.

T. Hospedales, A. Antoniou, P. Micaelli, and A. Storkey, Meta-learning in neural networks: A survey, 2020.

. Raad-i-issa, A. P. Gosman, and . Watkins, The computation of compressible and incompressible recirculating flows by a non-iterative implicit scheme, Journal of Computational Physics, vol.62, issue.1, pp.66-82, 1986.

R. Lguensat, P. Tandeo, P. Aillot, and R. Fablet, The Analog Data Assimilation, Monthly Weather Review, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01609141

D. Li, Y. Yang, Y. Song, and T. M. Hospedales, Learning to Generalize: Meta-Learning for Domain Generalization, AAAI, 2018.

E. N. Lorenz, Deterministic Nonperiodic Flow, Jal Atm. Sc, vol.20, issue.2, pp.130-141, 1963.

A. Lucas, M. Iliadis, R. Molina, and A. K. Katsaggelos, Using Deep Neural Networks for Inverse Problems in Imaging: Beyond Analytical Methods, IEEE SPM, vol.35, issue.1, pp.20-36, 2018.

M. T. Mccann, K. H. Jin, and M. Unser, Convolutional Neural Networks for Inverse Problems in Imaging: A Review, IEEE SPM, vol.34, issue.6, pp.85-95, 2017.

D. Nguyen, S. Ouala, L. Drumetz, and R. Fablet, Assimilation-based Learning of Chaotic Dynamical Systems from Noisy and Partial Data, IEEE ICASSP, pp.3862-3866, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02436060

S. Ouala, R. Fablet, C. Herzet, B. Chapron, A. Pascual et al., Neural-Network-based Kalman Filters for the Spatio-Temporal Interpolation of Satellite-derived Sea Surface Temperature, Remote Sensing, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01896654

O. Pannekoucke and R. Fablet, PDE-NetGen 1.0: from symbolic PDE representations of physical processes to trainable neural network representations, Geoscientific Model Development, pp.1-14, 2020.

S. Patankar, Numerical heat transfer and fluid flow, 2018.

P. Perez, Markov random fields and images. CWI Quarterly, pp.413-437, 1998.

C. Pires, R. Vautard, and O. Talagrand, On extending the limits of variational assimilation in nonlinear chaotic systems, Tellus A, vol.48, issue.1, pp.96-121, 1996.

M. Raissi, Deep Hidden Physics Models: Deep Learning of Nonlinear Partial Differential Equations. JMLR, vol.19, pp.1-24, 2018.

M. Raissi, P. Perdikaris, and G. E. Karniadakis, Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, Journal of Computational Physics, vol.378, pp.686-707, 2019.

E. Schwartz, R. Giryes, and A. M. Bronstein, DeepISP: Toward Learning an End-to-End Image Processing Pipeline, IEEE TIP, vol.28, issue.2, pp.912-923, 2019.

Y. Trémolet, Model error estimation in 4D Var, QJRMS, vol.133, issue.626, pp.1267-1280, 2007.

R. Vilalta and Y. Drissi, A Perspective View and Survey of Meta-Learning, Artificial Intelligence Review, vol.18, issue.2, pp.77-95, 2002.

J. Xie, L. Xu, and E. Chen, Image Denoising and Inpainting with Deep Neural Networks, NIPS, pp.341-349, 2012.