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Abstract: Over the last years, a very active field of research aims at exploring new data-driven and1

learning-based methodologies to propose computationally efficient strategies able to benefit from2

the large amount of observational remote sensing and numerical simulations for the reconstruction,3

interpolation and prediction of high-resolution derived products of geophysical fields. In this paper,4

we investigate how they might help to solve for the oversmoothing of the state-of-the-art optimal5

interpolation (OI) techniques in the reconstruction of sea surface height (SSH) spatio-temporal6

fields. We focus on two small 10◦ × 10◦ GULFSTREAM and 8◦ × 10◦ OSMOSIS regions, part7

of the North-Atlantic basin: the GULFSTREAM area is mainly driven by energetic mesoscale8

dynamics while OSMOSIS is less energetic but with more noticeable small spatial patterns. Based on9

Observation System Simulation Experiments (OSSE), we will use the the NATL60 high resolution10

deterministic ocean simulation of the North Atlantic to generate two types of pseudo altimetric11

observational dataset: along-track nadir data for the current capabilities of the observation system12

and wide-swath SWOT data in the context of the upcoming SWOT mission. We briefly introduce13

the analog data assimilation (AnDA), an up-to-date version of the DINEOF algorithm, and a new14

neural networks-based end-to-end learning framework for the representation of spatio-temporal15

irregularly-sampled data. The main objective of this paper consists in providing a thorough16

intercomparison exercise with appropriate benchmarking metrics to assess if these approaches17

helps to improve the SSH altimetric interpolation problem and to identify which one performs best18

in this context. We demonstrate how the newly introduced NN method is a significant improvement19

with a plug-and-play implementation and its ability to catch up the small scales ranging up to 40km,20

inaccessible by the conventional methods so far. A clear gain is also demonstrated when assimilating21

jointly wide-swath SWOT and (agreggated) along-track nadir observations.22

Keywords: Data-driven and learning-based approaches ; Interpolation ; Benchmarking ; Nadir &23

SWOT altimetric satellite data ; Sea surface height (SSH)24

1. Introduction25

Thanks to the ocean surface remote sensing data acquired by different altimetric missions26

(TOPEX/Poseidon, ERS-1, ERS-2, Geosat Follow-On, Jason-1, Envisat and OSTM/Jason-2), our27

understanding of the ocean circulation has been considerably improved over the last decades. But28

currently, the range of scales over 150km remains inaccessible to altimetric derived products because29
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of the limited number of altimetric missions and their spatio-temporal sampling [1]. In this context, a30

very active field of research now consists in taking advantage of the big amount of data and numerical31

simulations available to overcome these limits of conventional altimetric products, which motivate32

complementary developments combining high resolution remote sensing and numerical simulations.33

Over the last years, purely data-driven and artifical intelligence (AI)-based algorithms have just34

been proposed [2–6] to deal with problems directly related to data assimilation and operational35

oceanography. More specifically, promising preliminary results have been seen for the sea surface36

reconstruction and prediction from partial and noisy satellite observations.37

In this paper, we propose an intercomparison exercise of several data-driven and learning-based38

approaches to help for the reconstruction of altimetric fields. As a baseline the DUACS operational39

processing tool based on well established optimal interpolation (OI) techniques will be considered40

[7]. In Section 2, we present the case study and its dataset, developed within the BOOST-SWOT41

project framework (https://meom-group.github.io/projects/boost-swot): the NATL60 high resolution42

deterministic ocean simulation of the North Atlantic [8] is used as reference to simulate Sea Surface43

Height (SSH) along-track observations collected by four nadir, which is typically representative of44

the current observational altimetric capabilities. As an additional feature for the upcoming 202145

SWOT mission, pseudo-SWOT wide-swath observations also following realistic orbits are generated46

based on the NATL60 simulation. In Section 3, we present the data-driven approaches used in the47

intercomparison: 1) AnDA, a purely data-driven data assimilation scheme combining a patch-based48

analog forecasting operator with Kalman-based ensemble data assimilation, 2) VE-DINEOF, an49

EOF-based iterative method to interpolate in space and time the missing data, and 3) learning-based50

innovative end-to-end learning techniques that aims to learn jointly the Neural Network (NN)51

representation of the dynamics coupled with a NN-based solver of the targeted minimization problem.52

In Section 4, we provide a detailed evaluation of the results obtained over two small regions,53

GULFSTREAM and OSMOSIS, part of the North-Atlantic basin and labeled with very different54

energetic dynamics. The GULFSTREAM area is mainly driven by mesoscale processes with large55

eddies and OSMOSIS is less energetic but the small spatial patterns are more noticeable making its56

reconstruction also challenging. Last, a discussion based on the evaluation is engaged to give synthetic57

key results and additional insights for future related works.58

2. Case study and data59

2.1. NATL6060

The Nature Run (NR) used in this work corresponds to the NATL60 configuration [8] of the NEMO61

(Nucleus for European Modeling of the Ocean) model. It is one of the most advanced state-of-the-art62

basin-scale high-resolution (1/60◦) simulation available today, whose surface field effective resolution63

is about 7km.64

In this work, two specific 10◦ × 10◦ GULFSTREAM and 8◦ × 10◦ OSMOSIS domains are chosen (see65

Figure 1) to assess the performance of the data-driven interpolation methods. Over this regions, the66

Sea Surface Height (SSH), the resolution of the nature run is downgraded to 1/20◦, which is enough to67

capture both the GULFSTREAM mesoscale dynamical regime and the OSMOSIS small scales, while68

avoiding unnecessary heavy computation time.69

The NATL60 nature run will then be used as the reference Ground Truth (GT) in an observing system70

simulation experiments (OSSE). The pseudo-altimetric nadir and SWOT observational datasets will be71

generated by a realistic sub-sampling of satellite constellations.72

2.2. Nadir73

To provide the pseudo-nadir dataset, supposed to be representative of what is a current pre-SWOT74

observational altimetric dataset, the groundtracks of 4 altimetric missions (TOPEX/Poseidon, Geosat,75

Jason-1 and Envisat) picked up from the 2003 constellation, are used to interpolate the NATL6076

https://meom-group.github.io/projects/boost-swot
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GULFSTREAM OSMOSIS

Figure 1. GULFSTREAM and OSMOSIS domain

simulation from October 1st, 2012 to September 29th, 2013, thus covering a whole year of data.77

A Gaussian white noise with variance σ2 = 4− 9cm2 is then added to the interpolated NATL6078

simulation by the SWOTsimulator tool to mimic a noise with a spectrum of error consistent with global79

estimates from the Jason-2 altimeter [9].80

Because the space-time interpolations will focus on a daily-basis temporal resolution, we also build81

nadir pseudo-observations with an additional strategy by accumulating observations over a time82

window tk ± d days centered at time tk in order to increase the daily nadir spatial sampling. As in [5],83

we investigate the response of the different interpolation techniques when parameter d is either set to84

0 or 5, see Figures 2a and 2c for the corresponding aggregation on August 4, 2013, and August 5, 2013.85

2.3. SWOT86

In the same line, SWOT-like pseudo observations are also produced by the swotsimulator tool87

[10] in its swath mode with an along-track and across-track 2km spatial resolution, the same theoretical88

resolution the upcoming SWOT mission derived products should be able to provide. The nadir mode89

of the generator also provide pseudo-nadir along track observations though they are not used here.90

The simulator also adds instrumental noise on the idealized pseudo-SWOT dataset [11,12]. This noise91

potentially exhibits strong space-time correlations. Thus, the pseudo-SWOT observations are first92

preprocessed [13] to filter out these correlated components and avoid major issues in the assimilation93

and/or learning process of the interpolation methods.94

Let precise that over the low-latitude GULFSTREAM domain, the SWOT sampling is irregular leading95

to sequences of several days with only pseudo-nadir observations. This does not happen on the higher96

latitude OSMOSIS area where the SWOT temporal coverage is more regular. It can be seen along this97

paper on the time series evaluation figures embedding additional information about the daily spatial98

coverage as complementary barplots scaled on the right-hand side of the Y-axis.99

(a) nadir (d=0) (b) nadir (d=0) +
swot

(c) nadir (d=5) (d) nadir (d=5) +
swot

Figure 2. 0 and 5-days accumulated along-track nadir and wide-swath pseudo-observations on August
4, 2013 (a,b) and August 5, 2013 (c,d)
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2.4. DUACS OI products100

The DUACS system is an operational production of sea level products for the Marine (CMEMS)101

and Climate (C3S) services of the E.U. Copernicus program, on behalf of the CNES french space102

agency. It is mainly based on optimal interpolation techniques whose parameters are fully described103

in [7]. This methodology has been applied on the previously introduced pseudo along-track nadir and104

wide-swath SWOT data to generate regularly (0.25◦x0.25◦) daily gridded maps.105

3. Methods106

The data-driven methods we are investigating aims at solving smaller scales than operational OI
products, more adapted to estimate large scale dynamics. Along this line, we are using in the following
a multiscale decomposition:

x = x + dx + ε (1)

and all the interpolations methods used here will work on the anomaly field dx, seen as the difference107

between the original field x and the large scales components provided by the OI. In the end, we hope108

the effective resolution estimated for the anomaly field dx to be better than the OI-based representation109

of the dynamics. In what follows, y(Ω) = {yk(Ωk)} denotes the observational data corresponding to110

subdomain Ω = {Ωk} ⊂ D, Ω denotes the gappy part of the SSH field and index k refers to time tk.111

3.1. AnDA112

The Analog Data Assimilation (AnDA) is a purely data-driven data assimilation method
introducing a statistical operatorA as a substitute for the dynamical modelM, leading to the following
state-space formulation : {

dxk+1 = Ak+1(dxk) + µk

dyk = Hk(dxk) + εk
(2)

The analog forecasting operator A : dxa
k−1 7→ dx f

k , where superscripts a and f respectively relies113

to analysis and forecast, is built from the K most similar states to dxa
k−1 in the available past state114

dynamics catalog, supposed to be large enough to describe the space-time evolution of the processes.115

More precisely, dx f
k is sampled from the Gaussian prior dx f

k |dxa
k−1 ∼ N (µk, Σk), where the mean µk116

and the covariance matrix Σk are estimated using the so-called locally linear model [2], i.e. a weighted117

linear regression between the K nearest analogs and their successors.118

In the experiments, the diagonal of the observation error matrix Rk = Cov(εk) is not assumed constant119

but its values increase according to a parametric function of the hourly time lag between the observation120

and the day to estimate:121
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Figure 3. Variance of the observation error εk as a function of the hourly lag between the observation
and the day to estimate
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As in [5], a patch-based version of AnDA coupled with an EOF-based representation of the122

individual patches is used. The anomaly field dx is splitted into 169 vectorized patches p(s, t) of sizes123

1◦× 1◦, corresponding to 20 pixels × 20 pixels, with overlapping areas of 5 pixels. An EOF-based124

decomposition of each individual vectorized anomaly patches is then carried out to deal with the curse125

of dimensionality. Finally, the whole AnDA algorithm is performed at the patch-level, meaning that126

both the analog prediction and the assimilation are done onto the lower-dimensional space of their127

EOF-based representation. A final post-processing step (denoted as post-AnDA) is used to project the128

prediction onto the original space-time domain and average the overlapping patches to smooth out129

some blocky artefacts coming from the patch decomposition. On this last point, an improvement can130

be considered by using a convolutional neural network (CNN) to learn how to reconstruct the whole131

domain from the set of overlapping patches, as in [6].132

3.2. VE-DINEOF133

VE-DINEOF is a state-of-the-art interpolation approach [14] using an EOF-based iterative filling134

strategy. Typically the large-scale component provided by the OI is used (or 0 values if working on the135

anomaly) as a first guess to fill in the missing data over Ω. After each iteration and until convergence,136

the field is projected onto the N most significant EOF components of the lower dimensional space and137

new values for the missing data are used based on the updated reconstruction of the field. Finally,138

the VE-DINEOF algorithm is here proposed in its patch-based version, in the exact similar setting139

proposed for AnDA.140

3.3. End-to-end NN-learning141

An end-to-end learning representation has recently been introduced in [15] to deal with image
sequences involving potentially large missing data rates. In this framework, an energy-based
representation Uθ to minimize is introduced :

Uψ(dx) = ‖dx− ψ (dx) ‖2 (3)

where the operator ψ = ψθ denotes a NN-based representation of the underlying processes and ‖.‖2
Ω

refers to the L2 norm evaluated on subdomain Ω. Within a Bayesian framework, the interpolator IUψ
of

the irregular space-time dataset {dyk(Ωk)}, referred ad the hidden state in a classic data assimilation
framework, can be obtained by solving the minimization statement:

d̂xk = IUψ (dyk(Ωk)) = arg min
dx

Uψ (dx) (4)

such that IUψ (dyk(Ωk)) = dxk if no observational error are considered.
Last, for a specific definition of interpolator I, the learning problem for optimizing parameters θ of
the NN representation ψ can be stated as the minimization of the reconstruction error for the whole
observed data time series:

θ̂ = arg min
θ

∑
k

∥∥∥dyk(Ωk)− IUψ (dyk(Ωk))
∥∥∥2

Ωk
(5)

3.3.1. Architecture142

Typically, two NN-based energy parametrizations are considered:143

1. First, a classic convolutional auto-encoders (ConvAE) representations ψ(·) = φD(φE(·)) where144

the encoding operator φE maps the anomaly state dx onto a lower-dimensional space and the145

decoder φD has to project this encoded representation in the original space. It involves the146

following encoder architecture: five consecutive blocks with a Conv2D layer, a ReLu layer and147

a 2x2 average pooling layer, the first one with 40 filters and the following four ones with two148
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times the number of filters of the previous Conv2D layer (i.e. 80, 160 and 320 filters), and a final149

linear convolutional layer with 20 filters. The output of the encoder is 5x5x40. The decoder150

involves a Conv2DTranspose layer with ReLu activation for an initial 20x20 upsampling stage a151

Conv2DTranspose layer with ReLu activation for an additional 2x2 upsampling stage, a Conv2D152

layer with 40 filters and a last Conv2D layer with 22 filters (the length of the image time series153

times the number of covariates - the OI here - used in the model). All Conv2D layers use 3x3154

kernels. Overall, this model involves ≈ 600,000 parameters.155

2. GE-NN: Second, NN-based Gibbs-Energy (GENN) representations where dxs, the anomaly156

observed at location s ∈ D, is supposed to be explained by the potential function ψ(dxδs) with157

δs a predefined neighbourhood of site s, thus relating this representation to Markovian priors158

embedded in CNNs. A low energy-state Uψ(dx) =
∫
D Uψ(dxs)ds over the entire domain D159

ensures to provide a good state space reconstruction. Regarding the architecture involved,160

the following scheme is used: an initial 4x4 average pooling, a Conv2D layer with 40 filters,161

11x11 kernel, ReLu activation and a zero-weight constraint on the center of the convolution162

window, a 1x1 Conv2D layer with 40 filters, a ResNet composed of an initial mapping to an initial163

200x200x(5x40) space with a Conv2D+ReLu layer and a linear 1x1 Conv2D+ReLu layer with 40164

filters. Last, a final 4x4 Conv2DTranspose layer with a linear activation for an upsampling to the165

input shape is considered. GE-NN involves 10 residual units for a total of ≈ 450,000 parameters.166

We may point out that the considered GENN architecture is not applied to the initial 0.05◦ resolution167

but to downscaled grids by a factor of 4 through the introduced average pooling. First, this makes168

the comparison easier with the 0.25◦ DUACS OI resolution. Second, the application of GENNs to169

the finest resolution showed a lower performance, thus implying that considering a scale-selection170

problem when applying a given prior is mandatory. The upscaling involves the combination of a171

Conv2DTranspose layer with 11 filters, a Conv2D layer with a ReLu activation with 22 filters and a172

linear Conv2D layer with 11 filters.173

3.3.2. Fixed-point solver174

Based on this NN-parametrization of operator ψ and related energy/cost function Uψ, an iterative175

fixed-point solver can be used to optimize parameters θ of the NN-model (ConvAE or GENN) ψ w.r.t176

cost Uψ, see the corresponding sketch in Figure 4:177

dy(Ω)

dx(k)

NN model
for Uφ

× IΩ ×IΩ̄+

dx(k+1)

Fixed-point-based iteration

k
=

0,
··
·,

N
FP

Figure 4. Sketch of the iterative fixed-point algorithm
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The underlying idea is rather similar to the DINEOF approach, see Section 3.2, leading to the
iterative update of the hidden state:

x(k+1) =ψ
(

x(k)
)

x(k+1) (Ω) =y (Ω)

x(k+1) (Ω) =x(k+1) (Ω)
It is parameter-free and easily implemented as a NN in a joint solution with the178

NN-parametrization of Uθ for the interpolation problem. The two NN-architectures are then referred179

as FP-ConvAE and FP-GENN. Let note that additional improvements are expected when using180

an iterative gradient-based formulation of the solver, where the gradient of Uψ is replaced by a181

ConvNet or LSTM unit G(x− ψ(x)), thus enabling to solve jointly for the parametrization of ψ and182

G. Complementary results on SST datasets regarding this point can be found in [15]. Let precise183

that during the learning phase, anomaly image time series dxk±dT = dxk−dT:k+dT are built with184

time window dT = 5, centered on time tk, leading to image time series of length 11. Last, the185

above-mentioned works are generalized to establish a connection between 4DVAR variational data186

assimilation and joint learning of models and solvers in [16].187

4. Evaluation188

4.1. Experimental/benchmarking setup189

A specific aspect of this work consists in the period of data available because the NATL60 native190

run is only one-year long which is relatively short in comparison with the training period typically191

used in the previous related work mentioned in Introduction. To get around this issue, we decide to192

build four 20-days long validation period homogeneously distributed along this one-year dataset193

(see the starting dates reported on Figures 5 and 6), supposed to be representative of the different194

seasonality effects that may be encountered during the year.195

196

Regarding the metrics used in the intercomparison exercise, daily normalized RMSE (nRMSE) time197

series are first provided: they give a quick overview of the potential gain obtained with the data-driven198

interpolators. Additional correlation and variances scores are also computed, then all displayed199

together with the RMSE as Taylor diagrams. We also provide three other indicators, namely the200

global reconstruction score (R-score) for the known SSH field areas (Ω), the interpolation performance201

(I-score) for the missing data areas (Ω), and the reconstruction performance of the trained NN-based202

representation of the SSH dynamics for FP-ConvAE and FP-GENN when applied to gap-free SSH203

fields (AE-score). Last, signal-to-noise ratios are also computed in the spectral domain, in particular204

to assess up to which spatial scale the different interpolators are able to reproduce the ground truth.205

Table 1 provides all the formulas used to compute the above mentioned metrics used along Section 4.206
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Name Formula

Temporal domain

RMSE RMSE(tk)=
√

1
|D̃| ∑D̃

(xk − x̂k)
2

Error variance σ2
x− x̂(tk)=

1
|D̃| ∑D̃

[
(xk − x̂k)− (xk − x̂k)

]2
Correlation COR(tk)=

Cov(xk, x̂k)

σ(xk)σ(x̂k)

Reconstruction score R-score = 100×

1−
∑
Ω
((x− x)− (x̂− x̂))2

∑
Ω
(x− x)2


Interpolation score I-score = 100×

1−
∑
Ω

((x− x)− (x̂− x̂))2

∑
Ω

(x− x)2


Auto-encoder score AE-score = 100×

1−
∑
D̃
((x− x)− (ψ(x)− ψ(x)))2

∑
D̃
(x− x)2


Spectral domain RAPS RAPS(λ)=DSP(x̂k)(λ)

Signal-to-Noise Ratio SNR(λ)=
DSP(xk − x̂k)(λ)

DSP(xk)(λ)

Table 1. Temporal and spectral statistics used to assess the performance of the interpolators in the
Observation System Simulation Experiment

where D̃ denotes the gridded version of domain D and |D̃| is then the number of grid nodes of D̃.207

DSP denotes the density power spectrum, as introduced by Welch [17].208

4.2. GULFSTREAM209

We first have to discuss the time window parameter d related to the aggregation of along-track210

data over a specific day tk, see Section 2.2. A same value of this parameter may not be optimal211

for all the interpolators: AnDA exhibits a better performance when considering only along-track212

nadir data of the day (d = 0), thus contradicting the previous optimal results of d = 5 found by213

[5] over the Mediterranean sea, which may indicate AnDA responds differently to the along-track214

aggregation strategy depending on the energetic dynamical regime of the region. On the other hand,215

both FP-ConvAE and FP-GENN interpolators performs better (not shown here) by aggregating nadir216

data over a 5-day time window. As a consequence, the results presented in what follows will use value217

of d = 0 for AnDA and VE-DINEOF and d = 5 for FP-ConvAE and FP-GENN.218

Next, to evaluate the behaviour of the different interpolators on both along-track nadir samplings219

and their fusion with wide-swath SWOT datasets and make the comparison possible, we have to220

preliminary define if the NN-based interpolator will be used under a supervised or unsupervised221

learning strategy. Figure 5 depicts how the FP-GENN interpolator performs using nadir data (a) or222

their joint use with SWOT (b), according to the input and target data used for the training. Six possible223

configurations have been tested. Two supervised versions using the gap-free NATL60 simulations224

as target, and either the pseudo-observations or the gap-free maps as input, respectively denoted as225

FP-GENN-MNM and FP-GENN-NMNM. A fully unsupervised FP-GENN-MM version is also used in226

which both input and target are only made of the pseudo-observations. These three configurations227

are also tested when adding the DUACS OI product as a covariate for input data, because we think228

that this may give a prior information about how the anomaly field dx is distributed. Within this229

part-GULFSTREAM domain, we clearly see the best performance is obtained by the unsupervised230
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configuration of FP-GENN: it is a keypoint result because the learning network abilities seems to be231

better when it is fully data-driven, meaning that it benefits from its knowledge of the spatio-temporal232

location and occurence of the data, which is a fairly new avenue for data assimilation related problems.233

The use of the OI as a covariate improve the FP-GENN behaviour but not systematically.234

(a) nadir (b) nadir+swot

Figure 5. Daily spatial nRMSE computed on the 80-days non-continuous validation period for the
six supervised/unsupervised FP-GENN configurations. The spatial coverage of 0-days accumulated
along-track nadir (a) expanded with wide-swath SWOT data (b) is provided by the red-colored barplot

Intriguingly, if the joint use of nadir and SWOT data generally improves the results, using235

only nadir in the unsupervised FP-GENN may yield to a better reconstruction the days where no236

SWOT data is available. We hope that a longer training period could help the network to learn237

from the masking periodicity of 2D wide-swath data. Based on these first results, the FP-GENN238

interpolator is used in its unsupervised configuration with OI used as a covariate. Because FP-ConvAE239

generally shows lower performance, probably because auto-encoders may not be relevant for240

the reconstruction of fine-scale processes, it will be used in the following in its mid-supervised241

configuration (FP-ConvAE-MNM) as a low-rated NN-scheme among the NN-based interpolators.242

243

Figure 6 presents the daily nRMSE of the different interpolators: it can be seen how FP-GENN244

significantly outperforms the conventional OI-based interpolator, but also the other data-driven245

algorithms used in the experiment. In addition, the FP-GENN mapping error seems to be more stable246

along time than the OI, meaning that in case of a missing altimetric mission, the error would also247

remain more stable. AnDA still remains quite efficient at the very beginning of the four 20-days248

validation period, which is probably related to a strong persistence of the mesoscale dynamics of the249

SSH over the region. In other words, the one-year catalog (minus the 80 validation days) obviously250

enable to build a good analog forecasting operator when knowing the short-term dynamics, but its251

accuracy quickly decays afterwards, which may not be fair for AnDA that probably requires longer252

simulations-based catalog in this low-latitude GULFSTREAM region with large Rossby radius of253

deformation.254
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(a) nadir (b) nadir+swot

Figure 6. Daily spatial nRMSE computed on the 80-days non-continuous validation period for OI,
(post-)AnDA, VE-DINEOF, FP-ConvAE and FP-GENN. The spatial coverage of 0-days accumulated
along-track nadir and wide-swath SWOT data are respectively provided by the red and green-colored
barplots

The Taylor diagram in Figure 7a, here calculated over the 80 validation days and focusing only255

on small-scale structures by applying a high-pass filter that spectrally separates the horizontal scales256

ranging in the order of 150km, also confirms our first findings.257

(a) Taylor diagram (b) Signal-to-noise ratio

Figure 7. Taylor diagram and Signal-to-noise ratio computed on the 80-days non-continuous validation
period for OI, (post-)AnDA, VE-DINEOF, FP-ConvAE and FP-GENN computed for both nadir use
only and joint assimilation/learning with wide-swath SWOT data

In Table 2, R/I/AE-scores are applied to both SSH (after application of a retrieving high-pass filter258

to keep only the small scales information) and its gradient (module). Regarding the R-scores, AnDA259

and VE-DINEOF are often the best way to keep track of the known areas, which is not surprising since260

these two methods makes an explicit use of the observational altimetric data into their mapping process.261

When looking at the I-scores, where no data is available, FP-GENN now clearly stands out from the262

other interpolators, which motivate its future use for irregularly-sampled data with large missing data263

rates. In addition, because its reconstruction scores remain overall satisfactory, in particular when264

considering the joint learning on nadir and SWOT data, these results are supplementary arguments on265

account of this markovian-related NN-based formulation.266
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Model type R-score I-score AE-score

na
di

r

OI 87.32 72.17 _
AnDA 94.85 77.91 _

VE-DINEOF 96.11 72.72 _
FP-ConvAE 87.82 76.32 82.85
FP-GENN 91.78 84.56 93.15

na
di

r
+

SW
O

T OI 93.25 74.25 _
AnDA 96.05 83.55 _

VE-DINEOF 97.13 75.28 _
FP-ConvAE 80.63 77.51 83.26
FP-GENN 96.49 90.13 95.58

Model type R-score I-score AE-score

na
di

r

∇OI 78.03 75.97 _
∇AnDA 85.56 79.14 _

∇VE−DINEOF 82.69 75.61 _
∇FP−ConvAE 77.80 76.81 75.89
∇FP−GENN 81.05 80.56 84.24

na
di

r
+

SW
O

T ∇OI 73.83 75.78 _
∇AnDA 89.89 82.88 _

∇VE−DINEOF 88.19 76.69 _
∇FP−ConvAE 76.20 76.49 75.84
∇FP−GENN 86.96 85.33 88.23

Table 2. SSH and SSH gradient field R/I/AE-scores computed on the 80-days non-continuous
validation period for OI, (post-)AnDA, VE-DINEOF, FP-ConvAE and FP-GENN for both nadir use
only and joint assimilation/learning with wide-swath SWOT data

Last, when computing the radially averaged power spectra as a spatial domain averaged over the267

80-days validation period and the associated signal-to-noise ratio for joint use of along-track nadir268

with SWOT data (Figure 7b), we observe that AnDA and FP-GENN lead to a better constraint of the269

SSH spectrum compared to the actual OI capabilities. In particular, FP-GENN produces a spectrum270

closer to the ground truth real spectrum, by catching up the submesoscale range up to 60km (when271

picking up signal-to-noise ratio equals to 0.5) when considering a joint learning from along-track nadir272

and additional wide-swath SWOT data. Let note on Figure 7b the importance of the patch-based273

AnDA post-processing on its performance which clearly appears on the spectra: its overestimation by274

the blocky patch-based AnDA rough outputs is partly mitigated thanks to the smoothing produced by275

averaging the patches overlapping areas. This result may certainly be further improved, for instance276

by training a CNN rather than using a simple average-based smoothing.277

278

To further enhance the vizualisation of the improvements brought by the different interpolators,279

Figures 8 and Figure 9 depict the velocity ground truth as well as its global reconstruction based on OI,280

(post-)AnDA, VE-DINEOF, FP-ConvAE and FP-GENN with both single along-track nadir data and281

joint use with wide-swath pseudo-observations on August 4, 2013. In Appendix A, complementary282

figures are provided for the SSH on the same day. To support what has already been said through the283

performance analysis previously discussed, FP-GENN using 5-days accumulated nadir observations284

appears closer to the groud truth SSH field than the reconstruction obtained with FP-ConvAE285

using a similar solver but a simple auto-encoder representation of the dynamics. The latter clearly286

oversmoothes the true field and also exhibits some unnecessary artefacts on the SSH gradient thus287

explaining the noisy-related small scale energies on the spectra. The same artefacts appears on the288

VE-DINEOF mapping which exhibits discontinuities between the known wide-swath-informed areas289

and the filled missing data. Last, AnDA also behaves well, especially because the wide-swath SWOT290

data coverage on this specific day is important, getting its performance closer to FP-GENN than the291

day without the 2D-SWOT information.292
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(a) Ground Truth
(∇SSH)

(b) OI (c) Post-AnDA

(d) VE-DINEOF (e) FP-ConvAE (f) FP-GENN

Figure 8. Global SSH gradient field reconstruction obtained by OI, (post-)AnDA, VE-DINEOF,
FP-ConvAE and FP-GENN using along-track nadir data only

(a) Ground Truth
(∇SSH)

(b) OI (c) Post-AnDA

(d) VE-DINEOF (e) FP-ConvAE (f) FP-GENN

Figure 9. Global SSH gradient field reconstruction obtained by OI, (post-)AnDA, VE-DINEOF,
FP-ConvAE and FP-GENN for a joint assimilation/learning of along-track nadir with wide-swath
SWOT data
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4.3. OSMOSIS293

As already been done for the GULFSTREAM domain, we investigate how the different294

interpolation techniques behaves when varying nadir aggregation parameter d Figures 10a and 10c for295

the corresponding aggregation on August 4, 2013, and August 5, 2013.296

(a) nadir (d=0) (b) nadir (d=0) +
swot

(c) nadir (d=5) (d) nadir (d=5) +
swot

Figure 10. 0 and 5-days accumulated along-track nadir and wide-swath pseudo-observations on
August 4, 2013 (a,b) and August 5, 2013 (c,d)

The daily nRMSE as a function of the along-track nadir time window parameter d (not shown297

here) leads to the same GULFSTREAM-related optimal values, namely ANDA behaves best when298

considering only the data restained to the targetted day tk and both FP-ConvAE and FP-GENN299

performs better with d = 5.300

Regarding the GENN configuration, the fully unsupervised FP-GENN-MM + OI configuration, the301

one using only the observations as both target and input (with OI as additional covariate) does not302

seem to perform well on the OSMOSIS domain, while it was the best option in the GULFSTREAM303

region.304

(a) nadir (b) nadir+swot

Figure 11. Daily spatial nRMSE computed on the 80-days non-continuous validation period for the
six supervised/unsupervised FP-GENN configurations. The spatial coverage of 0-days accumulated
along-track nadir (a) expanded with wide-swath SWOT data (b) is provided by the red-colored barplot

It is especially noticeable on the 20-days long time series, see Figure 11. However, this result305

should be qualified because when replicating the same preliminary work to find the best FP-GENN306

configuration but with no observation errors, see Figure A12 in Appendix B, the unsupervised307

configuration is again the best solution. Thus, on this less energetic OSMOSIS domain, but with more308
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discernable fine scales, the observational errors seems to have much more consequences than when309

considering a domain mainly driven by mesoscale energies. In this Section, we then selected the310

supervised configuration FP-GENN-MNM + OI, in which the gap-free ground truth is used as target311

in the learning process, which does not prevent its use for future operational context, since the GENN312

inputs are still made of purely observational data: along this line, this type of configuration is here313

similar to the AnDA setup that needs both observation data and gap-free data to be operated.314

315

On Figure 12 of the daily nRMSE obtained with our set of data-driven interpolators along the316

validation period, it can be seen that using AnDA with along-track nadir data and wide-swath SWOT317

observations gets the best scores, which is confirmed on the Taylor diagram (Figure 13a) and also with318

R/I/AE-scores in Table 3. Still, FP-GENN performs in a very similar way and and the single use of319

nadir data is largely favorable to FP-GENN-MNM + OI.320

(a) nadir (b) nadir+swot

Figure 12. Daily spatial nRMSE computed on the 80-days non-continuous validation period for OI,
(post-)AnDA, VE-DINEOF, FP-ConvAE and FP-GENN. The spatial coverage of 0-days accumulated
along-track nadir and wide-swath SWOT data are respectively provided by the red and green-colored
barplots

(a) Taylor diagram (b) Signal-to-noise ratio

Figure 13. Taylor diagram and Signal-to-noise ratio computed on the 80-days non-continuous
validation period for OI, (post-)AnDA, VE-DINEOF, FP-ConvAE and FP-GENN computed for both
nadir use only and joint assimilation/learning with wide-swath SWOT data
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On the spectral analysis in Figure 13b, the signal-to-noise ratio of FP-GENN and AnDA indicates321

a capability to retrieve spatial scales up to 50-60km, while the OI clearly only catches again the spatial322

scales over 100km. Again, let remain that when no observational errors are introduced, see Figure323

A14b in Appendix B, the fully unsupervised configuration of FP-GENN still behaves better. The single324

use of along-track nadir data clearly downgrades the performance of interpolations even if the gain325

remains significant for FP-GENN.326

Model type R-score I-score AE-score

na
di

r

OI 42.05 32.11 _
AnDA 58.85 47.02 _

VE-DINEOF 26.29 30.61 _
FP-ConvAE 37.20 31.67 47.77
FP-GENN 67.94 62.52 80.40

na
di

r
+

SW
O

T OI 54.21 47.75 _
AnDA 81.15 70.91 _

VE-DINEOF 69.08 32.98 _
FP-ConvAE 45.15 42.70 47.93
FP-GENN 77.16 69.56 83.08

Model type R-score I-score AE-score

na
di

r

∇OI 48.83 47.57 _
∇AnDA 58.78 55.17 _

∇VE−DINEOF 33.11 35.28 _
∇FP−ConvAE 32.15 35.87 41.24
∇FP−GENN 50.53 52.12 60.41

na
di

r
+

SW
O

T ∇OI 36.83 47.30 _
∇AnDA 72.35 67.59 _

∇VE−DINEOF 22.08 24.90 _
∇FP−ConvAE 38.22 43.13 42.03
∇FP−GENN 56.29 59.21 67.69

Table 3. SSH and SSH gradient field R/I/AE-scores computed on the 80-days non-continuous
validation period for OI, (post-)AnDA, VE-DINEOF, FP-ConvAE and FP-GENN for both nadir use
only and joint assimilation/learning with wide-swath SWOT data

(a) Ground Truth
(∇SSH)

(b) OI (c) Post-AnDA

(d) VE-DINEOF (e) FP-ConvAE (f) FP-GENN

Figure 14. Global SSH gradient field reconstruction obtained by OI, (post-)AnDA, VE-DINEOF,
FP-ConvAE and FP-GENN using along-track nadir data only
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(a) Ground Truth
(∇SSH)

(b) OI (c) Post-AnDA

(d) VE-DINEOF (e) FP-ConvAE (f) FP-GENN

Figure 15. Global SSH gradient field reconstruction obtained by OI, (post-)AnDA, VE-DINEOF,
FP-ConvAE and FP-GENN for a joint assimilation/learning of along-track nadir with wide-swath
SWOT data

5. Discussion327

In this study focusing on how data-driven and learning-based algorithms may help to improve328

the reconstruction performance of altimetric fields generally given by a state-of-the-art optimal329

interpolation (OI) baseline, here provided by the DUACS processing chain, we used two small330

areas with different energetic dynamics: the 10◦ × 10◦ GULFSTREAM domain mainly driven by331

mesoscale processes and the 8◦ × 10◦ OSMOSIS domain, less energetic but labelled with more332

small scale structures. Based on the NATL60 numerical simulations [8], some experiments were333

designed in which pseudo observational along-track nadir and wide-swath SWOT realistic datasets334

are generated. Because the DUACS OI [7] of these pseudo-observations is used as the reference, all the335

investigated methods are applied in a multi-scale decomposition framework where the anomaly dx336

is seen as the difference between the original field x and the large-scale component x provided by the OI.337

338

Knowing the underlying reality, it was possible to precisely assess the reconstruction abilities of339

both AnDA and DINEOF data-driven methodologies, already consolidated with numerous experiences340

and methodological developments reported in the literature [2,5,6,14]. As a new competitive341

learning-based approach, we proposed to apply specifically interpolation-designed neural networks342

involving a joint interpolation and representation learning for irregularly-sampled satellite-derived343

geophysical fields [15]. As a short synthesis of these evaluations reported in Sections 4.2 and 4.3, some344

key points can be retrieved:345

• A significant gain from data-driven methods compared to the OI-based DUACS baseline: up to 40%346

relative gain on the SSH daily root mean squared error, in particular on the GULFSTREAM domain347

where the small scale spatial patterns structures are less noticeable compared to OSMOSIS ;348

• A better reconstruction performance of the learning-based GENN introducing a GMRF349

representation closely related to Gibbs energy concepts compared to AnDA and DINEOF ;350
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• A significant contribution from the 2D spatial information provided by the additional SWOT351

sampling to improve the reconstruction of altimetric fields with a relative gain up to 30% on the SSH352

daily mean squared error, when comparing to the single use of along-track nadir 1D information.353

Within this combined use of the two datasets, the spectral analysis indicates the new capability to354

reconstruct spatial scales up to 50-60km which is an important improvement compared to the scales355

that OI is handling by now; on the other hand, the temporal sampling being less important than356

nadir tracks, in particular on the GULFSTREAM domain where periods of several days without357

any SWOT information appears, the reconstruction on these specific periods is sometimes better358

when learning only with along-track nadir as inputs: we believe that a longer training period (not359

available here) should improve the behaviour of the NN on this specific issue;360

• The possibility of neural network methods to learn from the single observations, without requiring361

any numerical simulations, which is of particular interest on low latitude areas where the Rossby362

radius of deformation is large, thus requesting an important catalog to efficently retrieve the SSH363

dynamics over the year.364

As it stands, the results obtained are very encouraging: FP-GENN is a "plug-and-play" algorithm365

whose conceptual use easily enables its implementation on new datasets. Many perspectives have to366

be considered in the short and medium terms.367

The configuration of FP-GENN used here aims at minimizing the difference between the true anomaly368

state of the system dx and its representation ψ(dx) through energy form ||dx− ψ(dx)||2. Alternate369

energy forms have to be investigated, considering extremes or more generally the whole pdf. In370

addition, the fixed-point solver used in the joint interpolation approach with GENN never goes too371

far from the observations, even though they are noisy, which can be an issue in the case of a strong372

noise including spatial and/or temporal correlations, which was already seen when using SWOT data373

without any preprocessing (not shown here).374

From a methodological point of view, the next developments are expected in the coming related works375

to increase the gain already observed with FP-GENN:376

• use a joint learning of the dynamical representation ψ and the solver Γ minimizing its reconstruction377

error. A significant gain on the reconstruction performance is expected according to preliminary378

results obtained with toy models [16];379

• a stochastic extension of GENN for including in the NN-based framework an estimation of the380

uncertainties, thus enabling this new reconstruction method to fully compete with the other381

interpolators in a "data assimilation" context, with a possible link whith Gaussian Processes and the382

related Stochastic PDE formalism [18,19].383

Besides methodological aspects, new applications are also promising. If we focused here on small384

North-Atlantic subdomains, the transfer of the NN-based interpolators to an operational process chain385

will be to reproduce a similar work on the whole basin where the computational constraints in this386

learning-based setting with large number of parameters is still a challenge. Using a Deep Learning387

multi-GPU framework and build a pre-operational demonstrator should be of great interestest in the388

community, as are other SWOT use cases, e.g. using a pre-learning on SWOT data to produce a new389

interpolation of historical along-track nadir datasets, or taking advantage of the SWOT fast-sampling390

phase data as inputs for learning prior to its use with SWOT upcoming "operational" data. Last,391

because the 2D information brought by SWOT showed a significant gain in the reconstruction, a392

natural extension of this work would be to consider pseudo-observations SKIM datasets [20], whose393

swath width is more than twice larger (110km vs 270km), and also to propose multivariate analyses394

including complementary datasets (SST/SSS), already existing in other data-driven schemes like AnDA395

with an easy extension as additional channels in a neural networks framework.396

Supplementary Materials: The code is available on https://github.com/CIA-Oceanix/DINAE_keras with397

additional informations provided in the ReadMe file to describe the architecture of the code and how to use it398
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Appendix A. Complementary figures for SSH interpolations461

Appendix A.1. GULFSTREAM462

(a) Ground Truth
(SSH)

(b) OI (c) Post-AnDA

(d) VE-DINEOF (e) FP-ConvAE (f) FP-GENN

Figure A1. Global SSH field reconstruction obtained by OI, (post-)AnDA, VE-DINEOF, FP-ConvAE
and FP-GENN using along-track nadir data only

(a) Ground Truth
(SSH)

(b) OI (c) Post-AnDA

(d) VE-DINEOF (e) FP-ConvAE (f) FP-GENN

Figure A2. Global SSH field reconstruction obtained by OI, (post-)AnDA, VE-DINEOF, FP-ConvAE
and FP-GENN for a joint assimilation/learning of along-track nadir with wide-swath SWOT data
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Appendix A.2. OSMOSIS463

(a) Ground Truth
(SSH)

(b) OI (c) Post-AnDA

(d) VE-DINEOF (e) FP-ConvAE (f) FP-GENN

Figure A3. Global SSH field reconstruction obtained by OI, (post-)AnDA, VE-DINEOF, FP-ConvAE
and FP-GENN using along-track nadir data only

(a) Ground Truth
(SSH)

(b) OI (c) Post-AnDA

(d) VE-DINEOF (e) FP-ConvAE (f) FP-GENN

Figure A4. Global SSH field reconstruction obtained by OI, (post-)AnDA, VE-DINEOF, FP-ConvAE
and FP-GENN for a joint assimilation/learning of along-track nadir with wide-swath SWOT data



Version September 28, 2020 submitted to Remote Sens. 22 of 30

Appendix B. OSSE without observation errors464

Appendix B.1. GULFSTREAM465

(a) nadir (b) nadir+swot

Figure A5. Daily spatial nRMSE computed on the 80-days non-continuous validation period for the
six supervised/unsupervised FP-GENN configurations. The spatial coverage of 0-days accumulated
along-track nadir (a) expanded with wide-swath SWOT data (b) is provided by the red-colored barplot

(a) nadir (b) nadir+swot

Figure A6. Daily spatial nRMSE computed on the 80-days non-continuous validation period for OI,
(post-)AnDA, VE-DINEOF, FP-ConvAE and FP-GENN. The spatial coverage of 0-days accumulated
along-track nadir and wide-swath SWOT data are respectively provided by the red and green-colored
barplots
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(a) Taylor diagram (b) Signal-to-noise ratio

Figure A7. Taylor diagram and Signal-to-noise ratio computed on the 80-days non-continuous
validation period for OI, (post-)AnDA, VE-DINEOF, FP-ConvAE and FP-GENN computed for both
nadir use only and joint assimilation/learning with wide-swath SWOT data

Model type R-score I-score AE-score

na
di

r

OI 86.53 72.25 _
AnDA 90.56 76.81 _

VE-DINEOF 91.33 72.58 _
FP-ConvAE 69.46 63.82 79.86
FP-GENN 95.15 91.28 96.32

na
di

r
+

SW
O

T OI 91.76 75.30 _
AnDA 91.72 82.43 _

VE-DINEOF 92.47 76.00 _
FP-ConvAE 42.78 34.96 79.93
FP-GENN 97.31 91.45 96.87

Model type R-score I-score AE-score

na
di

r

∇OI 76.14 72.41 _
∇AnDA 81.81 76.15 _

∇VE−DINEOF 80.09 72.07 _
∇FP−ConvAE 58.30 59.79 70.14
∇FP−GENN 84.75 84.63 88.05

na
di

r
+

SW
O

T ∇OI 71.41 72.31 _
∇AnDA 85.85 79.80 _

∇VE−DINEOF 84.73 73.36 _
∇FP−ConvAE 31.78 36.48 69.72
∇FP−GENN 87.75 85.35 89.50

Table A1. SSH and SSH gradient field R/I/AE-scores computed on the 80-days non-continuous
validation period for OI, (post-)AnDA, VE-DINEOF, FP-ConvAE and FP-GENN for both nadir use
only and joint assimilation/learning with wide-swath SWOT data
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(a) Ground Truth
(SSH)

(b) OI (c) Post-AnDA

(d) VE-DINEOF (e) FP-ConvAE (f) FP-GENN

Figure A8. Global SSH field reconstruction obtained by OI, (post-)AnDA, VE-DINEOF, FP-ConvAE
and FP-GENN using along-track nadir data only

(a) Ground Truth
(∇SSH)

(b) OI (c) Post-AnDA

(d) VE-DINEOF (e) FP-ConvAE (f) FP-GENN

Figure A9. Global SSH gradient field reconstruction obtained by OI, (post-)AnDA, VE-DINEOF,
FP-ConvAE and FP-GENN using along-track nadir data only
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(a) Ground Truth
(SSH)

(b) OI (c) Post-AnDA

(d) VE-DINEOF (e) FP-ConvAE (f) FP-GENN

Figure A10. Global SSH field reconstruction obtained by OI, (post-)AnDA, VE-DINEOF, FP-ConvAE
and FP-GENN for a joint assimilation/learning of along-track nadir with wide-swath SWOT data

(a) Ground Truth
(∇SSH)

(b) OI (c) Post-AnDA

(d) VE-DINEOF (e) FP-ConvAE (f) FP-GENN

Figure A11. Global SSH gradient field reconstruction obtained by OI, (post-)AnDA, VE-DINEOF,
FP-ConvAE and FP-GENN for a joint assimilation/learning of along-track nadir with wide-swath
SWOT data
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Appendix B.2. OSMOSIS466

(a) nadir (b) nadir+swot

Figure A12. Daily spatial nRMSE computed on the 80-days non-continuous validation period for the
six supervised/unsupervised FP-GENN configurations. The spatial coverage of 0-days accumulated
along-track nadir (a) expanded with wide-swath SWOT data (b) is provided by the red-colored barplot

(a) nadir (b) nadir+swot

Figure A13. Daily spatial nRMSE computed on the 80-days non-continuous validation period for OI,
(post-)AnDA, VE-DINEOF, FP-ConvAE and FP-GENN. The spatial coverage of 0-days accumulated
along-track nadir and wide-swath SWOT data are respectively provided by the red and green-colored
barplots
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(a) Taylor diagram (b) Signal-to-noise ratio

Figure A14. Taylor diagram and Signal-to-noise ratio computed on the 80-days non-continuous
validation period for OI, (post-)AnDA, VE-DINEOF, FP-ConvAE and FP-GENN computed for both
nadir use only and joint assimilation/learning with wide-swath SWOT data

Model type R-score I-score AE-score

na
di

r

OI 44.63 34.93 _
AnDA 76.60 59.42 _

VE-DINEOF 77.17 37.66 _
FP-ConvAE 28.39 17.00 42.94
FP-GENN 84.35 76.17 86.30

na
di

r
+

SW
O

T OI 54.31 47.87 _
AnDA 83.07 74.95 _

VE-DINEOF 83.47 51.50 _
FP-ConvAE 36.80 33.37 47.56
FP-GENN 90.67 81.35 88.04

Model type R-score I-score AE-score

na
di

r

∇OI 49.53 48.20 _
∇AnDA 64.56 59.88 _

∇VE−DINEOF 58.71 45.61 _
∇FP−ConvAE 22.47 19.12 36.66
∇FP−GENN 62.47 61.64 64.88

na
di

r
+

SW
O

T ∇OI 37.55 47.93 _
∇AnDA 75.13 70.22 _

∇VE−DINEOF 79.31 49.32 _
∇FP−ConvAE 30.85 35.06 39.06
∇FP−GENN 67.99 67.47 69.21

Table A2. SSH and SSH gradient field R/I/AE-scores computed on the 80-days non-continuous
validation period for OI, (post-)AnDA, VE-DINEOF, FP-ConvAE and FP-GENN for both nadir use
only and joint assimilation/learning with wide-swath SWOT data
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(a) Ground Truth
(SSH)

(b) OI (c) Post-AnDA

(d) VE-DINEOF (e) FP-ConvAE (f) FP-GENN

Figure A15. Global SSH field reconstruction obtained by OI, (post-)AnDA, VE-DINEOF, FP-ConvAE
and FP-GENN using along-track nadir data only

(a) Ground Truth
(∇SSH)

(b) OI (c) Post-AnDA

(d) VE-DINEOF (e) FP-ConvAE (f) FP-GENN

Figure A16. Global SSH gradient field reconstruction obtained by OI, (post-)AnDA, VE-DINEOF,
FP-ConvAE and FP-GENN using along-track nadir data only
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(a) Ground Truth
(SSH)

(b) OI (c) Post-AnDA

(d) VE-DINEOF (e) FP-ConvAE (f) FP-GENN

Figure A17. Global SSH field reconstruction obtained by OI, (post-)AnDA, VE-DINEOF, FP-ConvAE
and FP-GENN for a joint assimilation/learning of along-track nadir with wide-swath SWOT data

(a) Ground Truth
(∇SSH)

(b) OI (c) Post-AnDA

(d) VE-DINEOF (e) FP-ConvAE (f) FP-GENN

Figure A18. Global SSH gradient field reconstruction obtained by OI, (post-)AnDA, VE-DINEOF,
FP-ConvAE and FP-GENN for a joint assimilation/learning of along-track nadir with wide-swath
SWOT data
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