C. Gkantsidis, G. Goel, M. Mihail, and A. Saberi, Towards topology aware networks, IEEE INFOCOM 2007-26th IEEE International Conference on Computer Communications, pp.2591-2595, 2007.

P. D. , L. , and S. Barbarossa, Distributed estimation and control of algebraic connectivity over random graphs, IEEE Transactions on Signal Processing, vol.62, issue.21, pp.5615-5628, 2014.

S. Barbarossa, S. Sardellitti, and P. D. Lorenzo, Distributed detection and estimation in wireless sensor networks, vol.2, pp.329-408, 2014.

P. D. Lorenzo, S. Barbarossa, and A. Sayed, Bio-inspired decentralized radio access based on swarming mechanisms over adaptive networks, IEEE Transactions on Signal Processing, vol.61, issue.12, pp.3183-3197, 2013.

R. K. Fan, F. C. Chung, and . Graham, Spectral graph theory, Number 92, 1997.

U. Von and L. , A tutorial on spectral clustering, Statistics and computing, vol.17, issue.4, pp.395-416, 2007.

A. Bertrand and M. Moonen, Seeing the bigger picture: How nodes can learn their place within a complex ad hoc network topology, IEEE Signal Processing Magazine, vol.30, issue.3, pp.71-82, 2013.

A. Ghosh and S. Boyd, Growing well-connected graphs, Proceedings of the 45th IEEE Conference on Decision and Control, pp.6605-6611, 2006.

M. Fiedler, Algebraic connectivity of graphs, Czechoslovak mathematical journal, vol.23, issue.2, pp.298-305, 1973.

A. Sarma, D. Nanongkai, G. Pandurangan, and P. Tetali, Distributed random walks, Journal of the ACM (JACM), vol.60, issue.1, pp.1-31, 2013.

M. Suhail and . Shah, Stochastic approximation on riemannian manifolds, pp.1-29, 2019.

P. Arbenz, D. Kressner, D. Zürich, and ;. Zurich, Lecture notes on solving large scale eigenvalue problems, vol.2, 2012.

D. Garber, E. Hazan, and T. Ma, Online learning of eigenvectors, ICML, pp.560-568, 2015.

I. Mitliagkas, C. Caramanis, and P. Jain, Memory limited, streaming pca, Advances in neural information processing systems, pp.2886-2894, 2013.

P. Jain, C. Jin, M. Sham, P. Kakade, A. Netrapalli et al., Streaming pca: Matching matrix bernstein and near-optimal finite sample guarantees for oja's algorithm, Conference on learning theory, pp.1147-1164, 2016.

A. Bertrand and M. Moonen, Distributed computation of the fiedler vector with application to topology inference in ad hoc networks, Signal Processing, vol.93, issue.5, pp.1106-1117, 2013.

K. Avrachenkov, P. Jacquet, and J. Sreedharan, Distributed spectral decomposition in networks by complex diffusion and quantum random walk, IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications, pp.1-9, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01263811

S. Vivek, R. Borkar, R. Makhijani, and . Sundaresan, Asynchronous gossip for averaging and spectral ranking, IEEE Journal of Selected Topics in Signal Processing, vol.8, issue.4, pp.703-716, 2014.

V. Borkar and . Sean-p-meyn, Oja's algorithm for graph clustering, markov spectral decomposition, and risk sensitive control, Automatica, vol.48, issue.10, pp.2512-2519, 2012.

V. Doshi and D. Young-eun, Fiedler vector approximation via interacting random walks, Proceedings of the ACM on Measurement and Analysis of Computing Systems, vol.4, issue.1, pp.1-28, 2020.

M. Luci?ska, T. S?awomir, and . Wierzcho?, Graph clustering using early-stopped random walks, IFIP International Conference on Computer Information Systems and Industrial Management, pp.416-428, 2016.

P. Van-mieghem, Graph spectra for complex networks, 2010.

G. H. Golub and C. F. Van-loan, Matrix Computations, 1989.

U. Helmke and J. Moore, Optimization and dynamical systems, 2012.

S. Vivek and . Borkar, Stochastic approximation: a dynamical systems viewpoint, vol.48, 2009.