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In recent years, there has been a growing research interest in integrating machine learning techniques
into meta-heuristics for solving combinatorial optimization problems. This integration aims to lead meta-
heuristics toward an ecient, effective, and robust search and improve their performance in terms of
solution quality, convergence rate, and robustness.
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Since various integration methods with different purposes have been developed, there is a need to re-
view the recent advances in using machine learning techniques to improve meta-heuristics. To the best
of our knowledge, the literature is deprived of having a comprehensive yet technical review. To “Il this
gap, this paper provides such a review on the use of machine learning techniques in the design of dif-
ferent elements of meta-heuristics for different purposes including algorithm selection, “tness evaluation,
initialization , evolution, parameter setting, and cooperation. First, we describe the key concepts and prelim-
inaries of each of these ways of integration. Then, the recent advances in each way of integration are
reviewed and classi“ed based on a proposed uni“ed taxonomy. Finally, we provide a technical discussion
on the advantages, limitations, requirements, and challenges of implementing each of these integration
ways, followed by promising future research directions.

© 2021 The Authors. Published by Elsevier B.V.
This is an open accessarticle under the CCBY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/ )

From a technical point of view, MHs are a family of approxi-
mate optimization methods that arrange and pilot an interaction
between local improvement procedures and higher-level strategies

1. Introduction

Meta-heuristics (MHs) are  computational intelligence

paradigms widely used for solving complex optimization problems,
particularly Combinatorial Optimization Problems (COPs) (Osman
& Laporte, 1996). COPsare a complex class of optimization prob-

lems with discrete decision variables and a “nite search space.

Many COPsbelong to the NP-Hard class of optimization problems
that require exponential time to be solved to optimality. For these
problems, MHs can provide acceptable solutions in reasonable
computational time, and as a result are good substitutes for exact
algorithms (Hertz & de Werra, 1990; Osman & Laporte, 1996;
Talbi, 2009). It is the main reason behind the signi“‘cant growth of
interest in MH domain in the past two decades.
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to create an iterative search process capable to escape from local
optima and perform a robust search of a search space (Gendreau &
Potvin, 2010). During such an iterative search process, a consider-
able number of solutions are generated, evaluated, and evolved un-
til a promising solution is obtained. Indeed, during the search pro-
cess, MHs generate a considerable volume of data including good
(elite) or bad solutions in terms of their “tness values, the se-
quence of search operators from beginning to the end, evolution
trajectories of different solutions, local optima, etc. These data po-
tentially carry useful knowledge such asthe properties of good and
bad solutions, the performance of different operators in different
stages of the search process, precedence of search operators, etc.;
however, classical MHs do not use any form of knowledge hidden
in these data.

Machine Learning (ML) techniques can serve MHs by extract-
ing useful knowledge from the generated data throughout the
search process. Incorporating such knowledge within the search

0377-2217/© 2021 The Authors. Published by Elsevier B.V. This is an open accessarticle under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/ )

2021.04.032

Please cite this article as: M. Karimi-Mamaghan, M. Mohammadi, P.Meyer et al., Machine learning at the service of meta-heuristics for
solving combinatorial optimization problems: A state-of-the-art, European Journal of Operational Research, https://doi.org/10.1016/j.ejor.




JID: EOR

M. Karimi-Mamaghan, M. Mohammadi, P. Meyer et al.

process guides MHs toward making better decisions and conse-
quently makes MHs more intelligent and signi“‘cantly improves
their performance in terms of solution quality, convergence rate,
and robustness. ML is a sub-“eld of arti“cial intelligence (Al) that
involves learning algorithms to infer from data to learn new tasks
(Song, Triguero, & Ozcan, 2019). The integration of ML techniques
and MHs has attracted intense attention in recent years (Song
et al., 2019; Talbi, 2016).

There are recent review papers on the use of MHs in ML tasks
(Calvet, de Armas, Masip, & Juan, 2017; Dhaenens & Jourdan, 2016;
Gambella, Ghaddar, & Naoum-Sawaya, 2020; Song et al., 2019; Sra,
Nowozin, & Wright, 2012; Wagner & Affenzeller, 2005; Xue, Zhang,
Browne, & Yao, 2015), the use of ML techniques for solving COPs
with the focus on exact optimization methods (Bengio, Lodi, &
Prouvost, 2021) as well as the integration of ML techniques into
MHs (Song et al., 2019; Talbi, 2016; 2020). The latter has received
signi“‘cant attention in recent years. In this paper, the focus is on
the integration of ML techniques into MHs. To the best of our
knowledge, the literature is deprived of having a comprehensive
yet technical review on how ML techniques can serve MHs and for
which speci“‘c purpose. In the past few years, several review pa-
pers have been published on the ways of integrating ML techniques
for a particular purpose (e.g., algorithm selection (Kerschke, Hoos,
Neumann, & Trautmann, 2019; Kotthoff, 2014), parameter tuning
(Aleti & Moser, 2016), etc.). Few papers provide a general review
on the integration of ML techniques for different purposes within
MHs (Song et al., 2019; Talbi, 2016; 2020).

Different from the literature, this paper provides a compre-
hensive and technical review on the integration of ML techniques
into MHs for different purposes including algorithm selection, “t-
nessevaluation, initialization , evolution, parameter setting, and coop-
eration. Among different optimization problems, the focus of this
paper is on solving COPs.This paper is not only a pedagogical pa-
per that describes the main concepts and preliminaries, but also
a technical paper that classi‘es the literaturess papers to identify
the research gaps and provides a technical discussion on the ad-
vantages/limitations, requirements, and challenges of implement-
ing each way of integration. Furthermore, a taxonomy is also pro-
posed to provide a common terminology and classi“cation. We be-
lieve that this paper is indispensable not only for non-experts in
the “eld of MHs desiring to use ML techniques, but also for senior
researchers that aim to provide a pedagogical lesson for junior stu-
dents, particularly Ph.D. students in both Operational Research and
Computer Science.

2. Background
2.1. Combinatorial optimization problems

Combinatorial optimization problems (COPs)are a class of op-
timization problems with discrete decision variables and a “nite
search space, although still too large for an exhaustive search to be
a realistic option (Korte, Vygen, Korte, & Vygen, 2012). The formal
representation of a COPis as follows:

minimize c(x)
subject to: gx) b @)
x 0,x f

where the inequalities g(x) b and x 0O are the constraints that
specify a convex polytope over which the objective function c(x)
is to be minimized, and f is the “nite set of feasible solutions x
that satisfy the constraints. There are many real-life problems (e.g.,
vehicle routing problem, scheduling problem, etc.) that can be for-
mulated as COPs.A large part of COPsbelong to the NP-Hard class
of optimization problems, which require exponential time to be
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solved to optimality (Talbi, 2009). Table A.1 in Appendix A provides
a list of COPsthat are referred to throughout this paper.

2.2. Meta-heuristics

Solving a large number of real-life COPsin an exact manner is
intractable within a reasonable amount of computational time. Ap-
proximate algorithms are alternatives to solve these problems. Al-
though approximate algorithms do not guarantee the optimality,
their goal is to obtain solutions as close as possible to the optimal
solution in a reasonable amount of computational time, at most
polynomial (Talbi, 2009).

Approximate algorithms are categorized into problem-dependent
heuristics and meta-heuristics. The former, as its name implies, de-
scribes a group of algorithms which are designed for and apply to
particular optimization problems. However, MHs are more general
algorithms applicable to a large variety of optimization problems,
particularly COPs,if well tailored.

MHs can be classi“ed in different ways. They can be nature-
inspired or non-nature inspired (Talbi, 2009). Many MHs are in-
spired by natural phenomena. Evolutionary Algorithms (EASs) such
as Genetic Algorithm (GA) (Holland et al., 1992), Memetic Algo-
rithm (MA) (Moscato et al., 1989), and Differential Evolution (DE)
(Storn & Price, 1997) are inspired by biology; Arti“cial Bee Colony
(ABC) (Karaboga, 2005), Ant Colony Optimization (ACO) (Dorigo
& Blum, 2005), and Particle Swarm Optimization (PSO) (Kennedy,
2006) are inspired by swarm intelligence. There are also MHs in-
spired by non-natural phenomena; Imperialist Competitive Algo-
rithm (ICA) (Atashpaz-Gargari & Lucas, 2007) by society, Simulated
Annealing (SA) (Kirkpatrick, Gelatt, & Vecchi, 1983) by physics, and
Harmony Search (HS) (Geem, Kim, & Loganathan, 2001) by musics.
From another perspective, MHs can be memoryless or they may use
memory during the search process (Talbi, 2009). Memoryless MHs
(e.g., GA, SA etc.) do not use the historical information dynami-
cally during the search process. However, MHs with memory, such
as Tabu Search (TS) (Glover & Laguna, 1998), memorize historical
information during the search process, and this memory helps to
avoid making repetitive decisions.

Furthermore, MHs can make deterministic or stochastic decisions
during the search process to solve optimization problems (Talbi,
2009). MHs with deterministic rules (e.g., TS) always obtain the
same “nal solution when starting from the same initial solution,
while stochastic MHs (e.g., SA, GA) apply random rules to solve the
problem and obtain different “nal solutions when starting from
the same initial solution. Moreover, in terms of their starting point,
MHs are divided into single-solution based or population-based MHs
(Talbi, 2009). Single-solution based MHs, also known as trajectory
methods, such as Iterated Local Search (ILS) (Lourenco, Martin, &
Stitzle, 2003), Breakout Local Search (BLS) (Benlic, Epitropakis, &
Burke, 2017), Descent-based Local Search (DLS) (Zhou, Hao, & Du-
val, 2016), Guided Local Search (GLS) (Voudouris & Tsang, 1999),
Variable Neighborhood Search (VNS) (Mladenovi ¢ & Hansen, 1997),
Hill Climbing (HC) (Johnson, Papadimitriou, & Yannakakis, 1988),
Large Neighborhood Search (LNS) (Shaw, 1998), Great Deluge (GD)
(Dueck, 1993), TS, SA, etc., manipulate and transform a single so-
lution to reach the (near-) optimal solution. Population-based MHs
such as Water Wave Optimization (WWO) (Zheng, 2015), GA, PSO,
ACO, etc., try to “nd the optimal solution by evolving a popula-
tion of solutions. Because of this nature, population-based MHs are
more exploration search algorithms, and they allow a better diver-
si“cation in the entire search space. Single-solution based MHs are
more exploitation search algorithms, and they have the power to
intensify the search in local regions.

Finally, depending on their search mechanism, MHs can be iter-
ative or greedy (Talbi, 2009). The former (e.g., ILS, GA) starts with
a complete solution and manipulates it at each iteration using a
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set of search operators. The latter, also called constructive algo-
rithm, starts from an empty solution and constructs the solution
step by step until a complete solution is obtained. Classical ex-
amples of greedy algorithms are Nearest Neighbor (NN), Greedy
Heuristic (GH), Greedy Randomized Heuristic (GRH), and Greedy
Randomized Adaptive Search Procedure (GRASP)(Feo & Resende,
1995).

2.3. Machine learning

Machine learning (ML) is a sub-“eld of arti“cial intelligence
that uses algorithmic and statistical approaches to give computers
the ability to elearnZ from data, i.e., to improve their performance
in solving tasks without being explicity programmed for each one
(Bishop, 2006). These systems improve their learning over time au-
tonomously, using extracted knowledge from data and information
in the form of observations and real-world interactions. The ac-
quired knowledge allows these systems to correctly generalize to
new settings. According to (Bishop, 2006), ML algorithms can be
classi“ed into:

€ Supervised learning algorithms ... Insupervised learning, the
values of input variables and the corresponding values of the
output variables (labels) are known a priori. A supervised learn-
ing algorithm attempts to automatically “gure out the relation-
ship between input variables and output labels and use it to
predict the output for new input variables. Depending on the
aim of learning, supervised learning algorithms can be classi-
“ed into classi“cation and regression algorithms. Classical super-
vised learning algorithms include Linear Regression (LR), Logis-
tic Regression (LogR), Linear Discriminant Analysis (LDA), Sup-
port Vector Machine (SVM), Naive Bayes (NB), Gradient Boost-
ing (GB), Decision Tree (DT), Random Forest (RF), k-Nearest
Neighbor (k-NN), Arti“cial Neural Network (ANN), etc.

€ Unsupervised learning algorithms ... Theyare used when the
training data is neither classi“ed nor labeled. In unsupervised
learning, the values of input variables are known while there
are no associated value for the output variables. The learning
task is therefore to “gure out and describe the patterns hid-
den in the input data. Clustering and Association Rules (ARs)
are two tasks of unsupervised learning. Classical unsupervised
learning algorithms include k-means clustering, Shared Nearest
Neighbor Clustering (SNNC), Self-Organizing Map (SOM), Princi-
pal Component Analysis (PCA), Multiple Correspondence Analy-
sis (MCA), and Apriori algorithms for ARs.

€ Reinforcement learning (RL) algorithms ... Inthese algorithms,
an agent iteratively learns from interactions with its environ-
ment to take actions that would maximize the reward or min-
imize the risk. At each iteration, the agent automatically de-
termines the ideal behavior (action) within a speci‘c context
to maximize its performance based on a reward feedback. RL
algorithms include Q-Learning (QL), Learning Automata (LA),
Opposition-based RL (OPRL), Monte Carlo RL, SARSA,Deep Re-
inforcement Learning (DRL), etc.

3. Taxonomy and review methodology

This section aims “rst at elaborating the major contributions
that distinguish our paper from the literature. Next, we present a
taxonomy to provide a common terminology and classi“cation on
the subject of this paper. Finally, the search methodology describ-
ing the procedure of searching and obtaining the relevant papers
is presented.
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To the best of our knowledge, there is no comprehensive re-
view paper on integrating ML techniques into MHs that investi-
gates the integration from a technical point of view. Jourdan, Dhae-
nens, and Talbi (2006) provided a short survey on how ML tech-
nigues can help MHs with no detailed discussion on how such
integration occurs. Another survey has been done by Zhang et al.
(2011) on how ML technigues can improve the performance of evo-
lutionary computation algorithms. Corne, Dhaenens, and Jourdan
(2012) investigated the synergy between operations research and
data mining with a focus on multi-objective approaches. With the
rapid advances in the use of new ML techniques in MHs for even
new purposes, as well as the increasing trend in the number of
annually published papers in the area, there is a need to update
the outdated review papers. In this regard, Talbi (2016) studied
different ways of hybridization between different MHs as well as
hybridizing MHs with mathematical programming, constraint pro-
gramming, and ML. Although the author provides a good overview
on how to hybridize MHs, it is less focused on the integration of
ML into MHs. Calvet et al. (2017) reviewed the integration of ML
and MH for solving optimization problems with dynamic inputs.
The authors enumerate different ways of integrating ML into MH
and vice versa; however, their work lacks a technical discussion on
the requirements, challenges, and future works of each way of in-
tegration.

More recently, more general and comprehensive studies have
been done by Song et al. (2019) and Talbi (2020) on integrat-
ing ML and MH. Song et al. (2019) studied the integration of ML
and optimization in general and not particulary MHs. The au-
thors review all four optimization-in-ML, ML-in-optimization, ML-
in-ML, and optimization-in-optimization ways of integration. How-
ever, Song et al. (2019) provided less details on the integration of
ML in MHs compared to Talbi (2020). Merely providing general
research directions, their work lacks a comprehensive discussion
on the research gaps and future research directions for the ML-
in-optimization way of integration. Talbi (2020) provided a more
complete and uni“ed taxonomy on the integration of ML into MHs.
The author identi“es the integration of ML in MHs in three levels:
1) problem level integration, where ML is used, for example, to de-
compose the solution space or to reformulate the objectives and
constraints of an optimization problem, 2) high-level integration
between MHs, where ML techniques are used to make a link be-
tween different MHs, and 3) low-level integration in a MH, where
ML techniques are used in the components of MHs (e.g., initial-
ization, operator selection, population management, etc.). Although
the work by Talbi (2020) is a good comprehensive and pedagogical
review paper explaining different general ways (i.e., levels) that ML
techniques can be integrated into MHs, it does not go into the de-
tails on the requirements, challenges, and possible future research
directions on the use of ML techniques in each level of integration.

To the best of our knowledge, the literature is deprived of hav-
ing a comprehensive and technical review on how ML techniques
can be integrated into MHs and for which speci‘c purposes. Dif-
ferent from the literature, this paper provides a review on the use
of ML techniques in the design of different elements of MHs for
different purposes including algorithm selection, “tness evaluation,
initialization , evolution, parameter setting, and cooperation. In a ped-
agogical way, we describe the key concepts and preliminaries of
each way of integration. In addition, this paper reviews the re-
cent advances on each topic and classi“es the literaturess papers to
identify the research gaps. We also propose a taxonomy to provide
a common terminology and classi“cation. As an important part, we
then provide a technical discussion on the advantages/limitations,
requirements, and challenges of implementing each way of inte-
gration. Finally, promising future research directions are identi“ed
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Fig. 1. Taxonomy on the use of ML in MHs (ML-in-MH).

depending on the way of integrating ML into MHs. We believe that
this paper is indispensable not only for non-experts in the “eld of
MHs desiring to use ML techniques, but also for senior researchers
that aim to provide a pedagogical lesson for junior students, par-
ticularly Ph.D. students in both Operations Research and Computer
Science.

3.2. Taxonomy

Although MHs and ML techniques have been initially devel-
oped for different purposes, they may perform common tasks such
as feature selection or solving optimization problems. MHs and
ML techniques frequently interact to improve their search and/or
learning abilities. MHs have been widely employed in ML tasks
(MH-in-ML) for decades (Wagner & Affenzeller, 2005; Xue et al.,
2015). For Instance, MHs can be used for feature selection, param-
eter setting of ML techniques (Oliveira, Braga, Lima, & Cornélio,
2010), or pattern recognition (Kiranyaz, Ince, & Gabbouj, 2014). ML
techniques are being extensively integrated into MHs (ML-in-MH)
to make the search process intelligent and more autonomous. For
instance, RL can help to select the most e cient operators of MHs
during the search process (dos Santos, de Melo, Neto, & Aloise,
2014).

The purpose of this paper is to review the studies wherein

ML techniques have been integrated into MHs for solving COPs.

We propose a taxonomy on integrating ML techniques into MHs,
ML-in-MH branch of Fig. 1. Discovering the MH-in-ML branch of
Fig. 1 is out of the scope of this paper, and we refer interested
readers to the latest literature reviews on the use of MHs in ML
tasks and the references cited therein (Calvet et al., 2017; Gambella
et al., 2020; Song et al., 2019).

We propose to classify different types of integration according
to the taxonomy presented on Fig. 1. According to this classi‘ca-
tion, ML techniques can be integrated into MHs for the following
purposes:

€ Algorithm selection ... When solving an optimization problem
with  MHs, the “rst decision is to select one or a set of MHs
for solving the problem. ML techniques can predict the perfor-
mance of MHs in solving optimization problems.

€ Fitness evaluation ... Thesuccess of any MH in achieving a spe-
ci“c goal (objective) is evaluated by “tness evaluation of the so-
lutions during the search process. ML techniques can speed up
the search process by approximating computationally expensive
“tness functions.

€ Initialization ... AnyMH starts its search process from an initial
solution or a population of solutions. ML techniques can help to
generate good initial solutions by using the knowledge of good
solutions on similar instances or speeding up the initialization
by decomposing the input data space into smaller sub-spaces.

€ Evolution ... Itrepresents the entire search process starting from
the initial solution (population) toward the “nal solution (pop-
ulation). ML techniques can intelligently select the search op-
erators (i.e., Operator selection), evolve a population of solu-
tions using the knowledge of good and bad solutions during the
search (i.e., Learnable evolution model), and to guide the neigh-
bor generation process using the knowledge obtained during
the search process (i.e., Neighbor generation).

€ Parameter setting ... AnyMH, depending on its nature, has a set
of parameters which need to be set before the search process
starts. ML techniques can help to set or control the values of
the parameters before or during the search process.

€ Cooperation ... SeveralMHs can cooperate with each other to
solve optimization problems in parallel or sequentially. ML
techniques can improve the performance of cooperative MHs by
adjusting their behavior during the search process.

Each type of integration in Fig. 1 can be also classi“ed from an-
other viewpoint into: problem-level, high-level, and low-level inte-
gration (Talbi, 2020). Algorithm selection and “tness evaluation rep-
resent a high-level and problem-level integration of ML into MHs,
respectively. Depending on the strategy to generate initial solu-
tions (see Section 6), initialization belongs to either problem-level
or low-level integration. Evolution and parameter setting fall in the
category of low-level integration. Finally, cooperation may belong
to either high-level or low-level integration depending on the level
of cooperation.

3.3. Searchmethodology

To conduct the literature review, “rst, well-known scienti“c
databases including Scopus, Google Scholar, |IEEE Explore, Science
Direct, Springer, ACM Digital Library, and Emerald have been care-
fully searched to “nd the relevant papers in both scienti“c jour-
nals and international conferences. To do that, we have identi“ed
a set of particular keywords for each type of integration. Then, the
search process is conducted using the following search rule:

{keyword1l ANDkeyword2 ANCkeyword3 ANCkeyword4y

keywordl is an element of a set of keywords related to the
integration types of ML techniques into MHs, as explained in
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Section 3.2 and Fig. 1. More precisely, keywordl belongs to the
union of the sets {algorithm selection, algorithm recommendation,
autonomous algorithm selection, performance prediction, meta-
learning, meta-feature} (for the algorithm selection), {“thess ap-
proximation, surrogate model, meta-model, “tness reduction} (for
the “tness evaluation), {initialization, initial solution generation}
(for the initialization), {adaptive operator selection, autonomous
operator selection, learnable evolution model, non-Darwinian evo-
lution, pattern extraction, rule extraction, rule injection} (for the
evolution), {parameter setting, parameter tuning, parameter con-
trol} (for the parameter setting), and {cooperation, cooperative
MHs, parallel MHs, Hybrid MHs, sequential MHs} (for the cooper-
ation of algorithms). keyword2 stands for the ML techniques ex-
tracted from Section 2.3. keyword3 accounts for different MHs,
ranging from single-solution to population-based MHSs, extracted
from Section 2.2. Finally, keyword4 is dedicated to the COP un-
der study. We provide a complete list of COPsin Table A.l in
Appendix A.

After “ltering the obtained papers, a total number of 136 pa-
pers are kept, which are relevant to the scope of this paper. All
these papers are reviewed and classi“ed in details in this paper.
Fig. 2 shows the number of reviewed papers per year (from 2000
to early 2021) and for each type of integration illustrated in Fig. 1.
Looking at the whole number of papers regardless of which type
of integration they belong to, Fig. 2 shows a signi“‘cant increase in
the number of papers integrating ML techniques into MHs for dif-
ferent purposes throughout the last two decades, which illustrates
a meaningful growth in the knowledge and popularity of the topic.
Among all types of integration, studies on evolution contribute the
most to the total number of papers over time, and an increasing
trend can be seen for the last decade. Algorithm selection and ini-
tialization have been at the second place of attention, and they

have gained signi“cant attention throughout the last two decades.

Cooperation, parameter setting, and “tness evaluation are also the
types of integration with semi-constant trend of attention. In sum-
mary, Fig. 2 illustrates that algorithm selection, evolution, and initial-
ization are being studied attentively, and “tness evaluation, parame-
ter setting, and cooperation are less-studied directions and they are
worthy to be explored more in the future.

The rest of this paper is structured as follows. Each section ex-
plains in details each way of integrating ML techniques into MHs
and starts with an introduction to the corresponding type of in-
tegration. Then, relevant papers are reviewed, classi‘ed, and ana-
lyzed. Finally, the section ends with a comprehensive discussion on
the corresponding guidelines, requirements, challenges, and future
research directions. To be more precise, Sections 4..9 are respec-
tively dedicated to algorithm selection, “tness evaluation, initial-

2010
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of ML techniques in MHs for solving COPs.

ization, evolution, parameter setting, and cooperation. Finally, con-
clusions and perspectives are given in Section 10.

4. Algorithm selection

There are many studies in the literature developing high-
performance MHs for well-known COPs. However, there is no
single MH that dominates all other MHs in solving all prob-
lem instances. Instead, different MHs perform well on different
problem instances (i.e., performance complementarity phenomena)
(Kerschke et al., 2019). Therefore, there is always an unsolved ques-
tion as *Which algorithm is likely to perform best for a given
COP?Z Rice et al., 1976). The ideal way to “nd the best algo-
rithm to solve a COP,when the computational resources are un-
limited, is to exhaustively run all available algorithms and choose
the best solution, no matter by which algorithm it has been ob-
tained. However, because of the limited computational resources, it
is practically impossible to test all available algorithms on a partic-
ular problem instance. In this situation, a major question arises as
*Among the existing algorithms, how to select the most appropri-
ate one for solving a particular problem instance?Z. ML techniques
help to answer this question by selecting the most appropriate al-
gorithm(s). This is where the Algorithm Selection Problem (ASP)
steps in.

ASP aims at automatically selecting the most appropriate al-
gorithm(s) for solving a problem instance using ML techniques
(Kerschke et al., 2019; Kotthoff, 2014). The original framework of
ASP was developed by Rice et al. (1976) based on four principal
components: 1) the problem space, including a set of problem in-
stances, 2) the feature space, including a set of quantitative charac-
teristics of the problem instances, 3) the algorithm space, including
a set of all available algorithms for solving the problem instances,
and 4) the performance space that maps each algorithm from the
algorithm space to a set of performance metrics such as the Ob-
jective Function Value (OFV), CPUTime (CT), etc. The “nal goal is
to “nd the problem-algorithm mapping with the highest perfor-
mance.

To “nd the best problem-algorithm mapping, ASP employs
Meta-learning, a sub-“eld of ML, that learns the problem-algorithm
mapping on a set of training instances and creates a meta-model.
The meta-model is then used to predict the appropriate map-
ping for new problem instances (Kotthoff, 2014). In solving COPs,
studying ASP has enabled researchers to take advantage of var-
ious MHs by systematically selecting the most appropriate algo-
rithm(s) among the existing ones, and has resulted in signi“cant
performance improvements (Kotthoff, 2016). In the literature, ASP
has been referred to as algorithm selection (Kanda, de Carvalho,
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Table 1

Classi“cation of papers studying ASP.
Ref. Prob. space  Alg. space Portfolio Perf. space Learning Task ML tech. Size
Hutter, Hamadi, Hoos, and SAT ILS Static CT Oine Reg. LR 30,000
Leyton-Brown (2006)
Smith-Miles (2008) QAP ILS, TS,ACO Static OFV Oine SLC ANN 644
Kanda et al. (2011a) TSP TS,GRASP,SA, GA Static OFV Oine MLC k-NN, ANN, NB 2500
Kanda, de Carvalho, Hruschka, and TSP TS,GRASPSA, GA Static OFV Oine LRC ANN 2000
Soares (2011b)
Kanda, Soares, Hruschka, and TSP TS,SA,GA, ACO Static OFV Oine LRC ANN 300
De Carvalho (2012)
Pitzer, Beham, and Affenzeller (2013) QAP TS,VNS Static OFV QO ine SLC LR, SVM, AR 137
Messelis and De Causmaecker (2014) PSP TS,GA Static OFV Oine SLC DT 3140
Smith-Miles et al. (2014) GCP HC, TS,ACO Static OFV Oine MLC SVM, NB 675
Kanda et al. (2016) TSP TS,SA,GA, ACO Static OFV Oine LRC ANN, k-NN, DT 600
Beham et al. (2017) QAP TS,VNS, GA, MA Static OFV,CT Oine SLC k-NN 94
de Leon, Lalla-Ruiz, Melian-Batista, BAP LNS Static OFV Oine LRC k-NN 720
and Moreno-Vega (2017a)
de Leon, Lalla-Ruiz, Melian-Batista, TSP,VRP GRASP,SA, LNS Static OFV Oine LRC k-NN 130
and Moreno-Vega (2017b)
Miranda et al. (2018) MAX-SAT GA, PSO Static OFV Oine SLC ANN, SVM, DT 555
Pavelski, Kessaci, and Delgado (2018b) FSP HC, SA, TS, ILS Static OFV Oine MLC GB 27,000
Pavelski, Delgado, and Kessaci (2018a) FSP HC, SA, TS, ILS Static OFV Oine SLC DT 12,000
Dantas and Pozo (2018) QAP BLS,ACO, TS Static OFV Oine SLC RF 135
Degroote, Gonzalez-Velarde, and AP TS Static OFV Oine SLC RF 286
De Causmaecker (2018)
Gutierrez-Rodriguez, Conant-Pablos, VRP EA, GA, PSO Static OFV Oine SLC ANN 56
Ortiz-Bayliss, and Terashima-Marin
(2019)
Dantas and Pozo (2020) QAP BLS,ACO,MA Static OFV Oine MLC RF 5000
Wawrzyniak et al. (2020) BAP HC, GRASP|LS Static OFV,CT Oine SLC k-NN 2100
Sadeg, Hamdad, Kada, Benatchba, and MAX-SAT GA, GRASP Static OFV,CT QOine SLC k-NN, RF,ANN 1534
Habbas (2020)
de la Rosa-Rivera, Nunez-Varela, TTP ILS, SA, VNS Static OFV Oine Reg. LR 6000

Ortiz-Bayliss, and Terashima-Marin
(2021)

Fig. 3. Procedure of ASP.

Hruschka, Soares, & Brazdil, 2016), per-instance algorithm selection
(Kerschke et al., 2019), algorithm recommendation model (Chu et al.,
2019), and automated algorithm selection (Dantas & Pozo, 2018).
However, they all share the same goal of automatically select-
ing the most appropriate algorithm(s) for a particular problem in-

stance.

We illustrate the procedure of ASPin Fig. 3. Asit can be seenin
Fig. 3, ASPinvolves two main steps: 1) meta-data extraction, and
2) meta-learning and meta-model creation.

€ Meta-data extraction

Given the problem and algorithm

€ Meta-learning

spaces, the goal is to determine the feature and performance
spaces called meta-data. Meta-data is classi“ed into two cat-
egories: meta-features and meta-target features (Kanda et al.,
2016). Meta-features are a set of quantitative features that rep-
resent the properties of a problem instance, while meta-target
features are a set of performance data that describe the perfor-

mance of each algorithm on a particular problem instance. Con-
sidering the importance of de“ning appropriate meta-features,
there are several works in the literature which aim to identify
good meta-features for different COPs,including SAT (Kerschke
et al., 2019), TSP (Kerschke et al., 2019; Mersmann et al.,
2013; Smith-Miles & Lopes, 2012), AP (Angel & Zissimopou-
los, 2002; Smith-Miles & Lopes, 2012), OP (Bossek, Grimme,
Meisel, Rudolph, & Trautmann, 2018), KP (Smith-Miles & Lopes,
2012), BPP (Smith-Miles & Lopes, 2012), and GCP (Smith-Miles
& Lopes, 2012).

and meta-model creation Using the meta-
data, a meta-model is created which can predict the perfor-
mance of each algorithm for each problem instance and deter-
mine the problem-algorithm mapping. Depending on the type
of prediction expected from the meta-model, different ML tech-
niques can be used for meta-learning and creating the meta-
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model. Different types of prediction include selecting the best
algorithm (Smith-Miles, 2008), selecting a set of most appro-
priate algorithms (Kanda, Carvalho, Hruschka, & Soares, 2011a),
and ranking a set of appropriate algorithms (Kanda et al.,
2016) for solving a problem instance. Depending on the type
of prediction, the task of meta-learning could be Single-label
Classi“cation (SLC), Multi-label Classi“cation (MLC), and Label-
ranking Classi“cation (LRC), respectively. Besides classi“cation
techniques, regression techniques such as LR can also be used
to predict the performance of each algorithm. Using regression
techniques, the meta-learning problem is a multiple regression
problem wherein one target variable is considered for each al-
gorithm.

Considering the way to create the meta-model, ASP can be ei-
ther online or oine . In oine ASP,the meta-model is constructed
using a particular set of training instances with the aim to predict
the problem-algorithm mapping for new problem instances (Kanda
et al., 2016; Miranda, Fabris, Nascimento, Freitas, & Oliveira, 2018;
Smith-Miles, 2008). However, in online ASP, the meta-model is
constructed and employed dynamically while solving a set of prob-
lem instances (Armstrong, Christen, McCreath, & Rendell, 2006;
Degroote, Bischl, Kotthoff, & De Causmaecker, 2016; Gagliolo &
Schmidhuber, 2010; Kerschke et al., 2019). Furthermore, the algo-
rithm space, commonly known as algorithm portfolio, is classi‘ed
as static or dynamic. Static portfolios contain a set of “xed algo-
rithms which are included into the portfolio before solving a prob-
lem instance and the composition of the portfolio along with the
algorithms within the portfolio do not change during solving an in-
stance, while dynamic portfolios contain a set of algorithms whose
composition and con“guration may change while solving a prob-
lem instance (Kotthoff, 2014).

In the rest of this section, the research papers studying ASP for
COPsare reviewed and classi‘ed, followed by a detailed discussion
on the corresponding guidelines, requirements, challenges, and fu-
ture research directions.

4.1. Literature classi‘cation & analysis

Inspired from Fig. 3, Table 1 classi“es the papers studying ASP
for COPsbased on different characteristics such as problem space
algorithm space algorithm portfolio type, performance space learn-
ing mechanism, meta-learning task, the employed ML technique,
and the size of the training set. To the best of our knowledge,
Table 1 lists all relevant papers, including the most recent papers
in the literature that study ASPfor selecting MHs to solve COPsus-
ing ML techniques. Other papers which miss at least one of these
three main components (i.e., MHs, ML techniques, or COPs)are out
of the scope of this paper and are not reviewed in this paper.

Regarding the problem space, TSPand QAP are the most stud-
ied problems compared to the other COPs.Also, Table 1 shows that
a majority of the studied COPshave a common characteristic; they
either have permutation-based representation (e.g., TSP,VRP, FSP)
or discrete value based representation (e.g., AP, QAP). One of the
major reasons for such an observation is the availability of various
powerful MHs for these representations, as well as the simplic-
ity of manipulating these types of representations (Abdel-Basset,
Manogaran, Rashad, & Zaied, 2018; Arora & Agarwal, 2016; Kog,
Bektas, Jabali, & Laporte, 2016).

Considering the algorithm space, Table 1 reveals that the algo-
rithm portfolio in most of the studies is composed of MHs with
different mechanisms, varying from single-solution to population-
based, from memory-less MHs (e.g., ILS) to MHs with memory
(e.g., TS),from MHs with accepting only better solutions (e.g., ILS)
to MHs with accepting worse solutions (e.g., SA), and from MHs
with “xed neighborhood size (e.g., TS and SA) to MHs with vari-
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able neighborhood size (e.g., VNS). The utilization of such differ-
ent algorithms in a portfolio highlights the fact that different MHs
with different search mechanisms perform differently for different
instances of COPs(dos Santos et al., 2014).

Table 1 also shows that all reviewed papers use a static portfo-
lio. Since the algorithms and their con“gurations do not change in
static portfolios, their selection becomes more crucial for the over-
all success of the resolution process. An e cient way to construct
the portfolio is to involve algorithms that complement each other
such that good performance can be achieved on a wide range of
different problem instances. There has been a debate on the com-
position and characteristics of the algorithms within the portfolio
among the reviewed papers. The “rst and the most straightforward
manner to construct the portfolio is to randomly select algorithms
from a large pool of diverse MHs. The second manner is to in-
corporate MHs with the best overall performance in the portfolio.
However, the third and the most promising manner is to construct
a portfolio with algorithms of complementary strengths. An ASP
with a portfolio composed of MHs with complementary strengths
logically seems to be more ecient comparing to an ASP with
a portfolio composed of MHs with the best overall performance.
However, most research papers construct the portfolio less explic-
ity using the MHs that have performed well in the literature when
solving particular instances of the COPat hand, regardless of their
strengths and weaknesses when facing new problem instances.

Considering the performance space we can see that most of the
papers evaluate the performance of an algorithm based on the
OFV of the obtained solutions. Although considering the quality
of solutions in terms of their OFV is the most common criterion
to compare algorithms, there are other criteria that play an im-
portant role when selecting an algorithm, among which the CT
and robustness have a high importance, especially for solving COPs
(Choong, Wong, & Lim, 2019; Mosadegh, Ghomi, & Suer, 2020; dos
Santos et al., 2014). Therefore, OFV, CT, and robustness are the
three most important criteria by which the algorithms could be
compared. Although there is a trade-off between these measures,
and usually no algorithm performs best in all criteria, taking into
account these criteria provides more e cient algorithm selection
when solving COPs(Beham, Affenzeller, & Wagner, 2017; Wawrzy-
niak, Drozdowski, & Sanlaville, 2020). The multiple criteria ASPcan
be modeled through a multi-objective perspective (Kerschke et al.,
2019).

Table 1 shows that all reviewed papers have created the meta-
model in an oine manner and none of them studies the online
ASPfor solving COPs.A big disadvantage of ASPin an oine man-
ner is that in this way, the performance of the selected algorithms
is not monitored to con‘rm whether they satisfy the expectations
that led them being selected or not. Accordingly, oine ASPis in-
herently vulnerable to bad choices of MHs; however, the advantage
of an oine ASPis its lower computational effort since the meta-
model is created once based on a set of training instances. On the
contrary, the major advantage of an online ASPis the more jus-
ti*ed decisions that can be made during the algorithm selection
process, which also reduces the negative impact of a bad choice.
However, adding such “exibility imposes an extra effort, as the
meta-model is created and employed dynamically while solving
a set of problem instances and thus decisions on algorithm se-
lection need to be made more frequently throughout the resolu-
tion of the new problem instances. Broadly speaking, there is no
evidence to show the superiority of one method over the other,
and both methods have led to performance improvements (Kanda
et al., 2016; Wawrzyniak et al., 2020). Hence, the choice of whether
to create the meta-model in an oine or an online manner de-
pends highly on the speci‘c application.

Another studied characteristic in Table 1 is the meta-learning
task. The most common output of ASPis a single best algorithm
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from the portfolio and using it to solve the problem instance (i.e.,
the result of SLCtask). A disadvantage of selecting a single best
algorithm is having no way of compensating a wrong selection. In-
deed, if a single algorithm is selected and shows unsatisfying per-
formance on a new problem instance, there are no other recom-
mended algorithms to replace such an ine cient algorithm. An al-
ternative approach is selecting multiple algorithms (i.e., the result
of MLC and RLCtasks). However, there is no report to show that
one of these approaches is superior to another.

4.2. Discussion & future research directions

In this section, “rst, a guideline is provided for researchers on
when to study ASPand which requirements to meet to study ASP.
Second, a set of technical challenges of studying ASPare discussed.
Finally, several future research directions are provided based on
the research gaps extracted from Table 1.

4.2.1. Guideline & requirements

The aim of providing a guideline for studying ASPis to help
researchers to understand that although studying ASPmay provide
the most appropriate MH(s) to solve COPs,it is not always the best
choice. In the following, we “rst describe the situations where ASP
is useful; then, the requirements of using ASPare elaborated.

Studying ASPis useful when the computational resources (i.e.,
available time and the number of available cores) for solving a
problem instance are limited. This is the case for optimization
problems at an operational level where limited time is available,
and the problems should be solved more frequently. On the other
hand, for the optimization problems at the strategic level (e.g.,
FLP),where there is enough time, the best choice is to execute all
algorithms and select the most appropriate one, since in the strate-
gic level, “nding better solutions outweighs the computational cost
of executing all algorithms. Furthermore, another moment when
studying ASP becomes indispensable is when there are several ef-
“cient competitive algorithms for the problem at hand and none
of them could be de“nitely selected for solving the problem in-
stance. In addition, ASP can help non-experts to select appropri-
ate algorithm(s) for solving optimization problems. In other words,
ASP can be replaced by the traditional trial-and-error optimization
tasks, especially when the number of candidate algorithms is large
and little prior knowledge of the problem is available.

Once the use of ASPis justi“ed, a set of requirements should be
ful‘lled before applying ASP.The “rst requirement for using ASPis
affordability of the selection procedure in terms of computational
resources. In fact, if studying ASP for a problem instance is more
expensive than solving the problem instance with all algorithms
and selecting the best one, there is no need at all to study ASP.
The next important requirement that could be also a challenge for
ASPis data availability . When creating the meta-model, it is nec-
essary to provide a pool of sucient training instances that well
represent new instances. It should be noted that having a pool of
sucient instances does not guarantee the eciency of ASP,and
instance dissimilarity and algorithmic discrimination are two other
requirements that need to be satis‘ed (Smith-Miles, Baatar, Wre-
ford, & Lewis, 2014). The former denotes the necessity of providing
instances which are as diverse as possible and spread out over dif-
ferent regions. The latter denotes the necessity to provide instances
that show different behaviors while being solved by different algo-
rithms in the portfolio. Indeed, some instances should be easy for
some algorithms and hard for others. Algorithmic discrimination re-
quirement helps to learn the strengths and weaknesses of different
algorithms when solving different instances with different charac-
teristics.
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4.2.2. Challenges& future research directions

Despite the effectiveness of ASPin solving COPs,the implemen-
tation of an algorithm selection procedure is not always straight-
forward, and researchers may face several challenges throughout
the ASP procedure, from the design to its implementation.

The “rst challenge to deal with is called data generation chal-
lenge. As mentioned earlier, two important requirements of ASP
are instance dissimilarity and algorithmic discrimination that allow
generating a rich data set of instances with different characteris-
tics that leads to a more ecient meta-model creation. To gener-
ate such a rich data set, the algorithms need to be provided with
a wide range of instances. This challenge is twofold: 1) Finding or
generating a set of sucient instances that ensure the data avail-
ability requirements, particularly instance dissimilarity and algorith-
mic discrimination , is a complicated task and 2) Executing all can-
didate algorithms on the generated instances might be very time
consuming if the number of instances is large. This makes the
meta-model creation computationally expensive. This “rst chal-
lenge becomes more and more complicated if little knowledge is
available for the COPsat hand. On the other hand, it would be less
challenging to generate a set of sucient instances that fulls the
mentioned requirements for classical COPsfor which there exists
several instance libraries (e.g., TSPLIBfor TSP (Reinelt, 1991) and
Taillard for FSP(Taillard, 1993)).

Apart from the data generation challenge, the second challenge
is instance characterization. A major issue in creating a meta-model
is the characterization of the problem instances through a set of
appropriate  measures, called meta-features (Smith-Miles & Lopes,
2012). Meta-features must reveal instance properties that affect
the performance of the algorithm. More informative and appropri-
ate features lead to a better mapping between the meta-features
and algorithm performance and consequently a high-quality meta-
model. The instance characterization challenge has two aspects;
“rst, the type of meta-features to extract and, second, the com-
putational time associated with the meta-feature extraction. The
type of meta-features varies from the most basic ones such as de-
scriptive  statistics (e.g., minimum, maximum, mean, and median
of input parameters) to more complex ones such as landscape fea-
tures of COPs.Taking TSP as an example, the basic meta-features
include <Edge and vertex measuresZ such as number of vertices,
the lowest/highest vertex cost, and the lowest/highest edge cost, and
the more complex meta-features could be scomplex network mea-
suresZ such as average geodesic distance, network vulnerability , and
target entropy (Kanda et al., 2016). Depending on the type of meta-
features, feature extraction can be a computationally cheap task
for basic features and expensive for more complex ones. There-
fore, in selecting the meta-features, one should consider both the
level of information they provide and their corresponding compu-
tational time. The optimal way is to select a set of features that are
as informative as possible while computationally affordable. To put
the issue into perspective, creating a high-quality meta-model is a
complicated interplay between using a set of diverse training in-
stances with different behavior over different algorithms and using
a subset of informative meta-features whose extraction is compu-
tationally cheap.

There is always an unanswered question on the trade-off be-
tween the performance of the algorithm selection and its com-
plexity, particularly on the extraction of meta-features. An impor-
tant direction for future research is moving from problem-speci‘c
features toward more general and simple features which are com-
putationally cheaper to be extracted when studying ASP.There is
evidence that shows for particular optimization problems, a small
number of simple meta-features suce for achieving excellent per-
formance of ASP (Hoos, Peitl, Slivovsky, & Szeider, 2018).

In the reviewed studies, the focus has been on heterogeneous
portfolios composed of different MHs with different characteristics,
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while different con“gurations of a single MH in a homogeneous
portfolio also show different behavior in solving a COP.Another in-
triguing future research direction could be studying ASP for COPs
with a homogeneous portfolio, to select a particular con“guration
of a single MH among a set of particular con“gurations, which is
even less challenging compared to dealing with a portfolio of dif-
ferent algorithms.

As explained in Section 4.2.1, instance dissimilarity and algorith-
mic discrimination are two requirements and also two challenges of
ASP.An interesting research direction could be the idea of evolving
instances using EAs (Bossek & Trautmann, 2016; van Hemert, 2006;
Mersmann et al., 2013; Smith-Miles, van Hemert, & Lim, 2010). In-
deed, the idea is to use EAsto evolve instances of COPsas distinct
as possible to ensure instance dissimilarity. In this way, a set of
diverse instances are obtained, improving the performance of the
meta-model.

Developing an online ASPis another promising future research
direction. As shown in Section 4.1, all papers have studied oine
ASP,where the meta-model is created using a set of training in-
stances. However, it might be possible to get even better results
using online ASP, which adapts the algorithm selection mecha-
nism while solving a set of problem instances. Although the on-
line ASP imposes an extra computational overhead, it increases
the robustness, as adjustments (if required) can be applied to the
algorithm selection mechanism during the resolution of COP in-
stances. It is worth mentioning that the extra overhead can be alle-
viated by using computationally cheap meta-features. Another way
to cope with the extra overhead is using incremental or online ac-
tive learning techniques where an already trained model is used
and improved incrementally during the search process (Lughofer,
2017).

When the output of ASPis multiple selected algorithms, one
can study how multiple selected algorithms are scheduledto solve
a problem instance. The key idea of scheduling is to execute a se-
quence of algorithms from a given set, one after another, each for
a given (maximum) time (Kotthoff, 2014). Most of the research
papers in Table 1 proposing multiple algorithms have not stud-
ied the algorithm schedule. However, more “exibility is obtained
throughout the search process when an algorithm with particu-
lar strength (i.e., exploration and exploitation) is employed when-
ever needed. Accordingly, one future research direction could be
scheduling multiple recommended algorithms to solve a problem
instance. The schedule of algorithms can be either static or dynamic
(Kadioglu, Malitsky, Sabharwal, Samulowitz, & Sellmann, 2011). In
a static algorithm schedule, algorithms are executed based on a
given order. In a dynamic schedule, the sequence of algorithms
may change based on their historical performance, and certain al-
gorithms may not be used at all.

Another interesting future research direction could be taking
into account multiple performance criteria by which the algo-
rithms are evaluated when studying ASP.The multiple criteria ASP
can be modeled through a multi-objective perspective (Kerschke
et al., 2019). Last but not least, Table 1 reveals that the focus has
been mostly on COPswith permutation-based and discrete value
based representations. As a future research direction, ASP can be
extended to other COPssuch as different types of scheduling prob-
lems for which a lot of ecient MHs have been developed in re-
cent years (Allahverdi, 2015).

5. Fitness evaluation

Fitness evaluation is one of the key components of MHs to
guide the search process towards the promising regions of the
search space. For some optimization problems, there is no analyti-
cal “tness function by which the solutions are evaluated, or even if
it exists, it is computationally expensive to evaluate. ML techniques
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can be integrated into MHs to reduce the computational effort for
solving such optimization problems either through “tness approxi-
mation (Diaz-Manriquez, Toscano, & Coello, 2017; Jin, 2005; 2011)
or “tness reduction (Saxena, Duro, Tiwari, Deb, & Zhang, 2012).
Fitness approximation is categorized into functional approximation
and evolutionary approximation (Jin, 2005):

€ Functional approximation . Itis used when evaluating the
solutions using the original “tness function is computationally
expensive. In this condition, the computationally expensive “t-
ness function is replaced with an approximate model that im-
itates the behavior of the original “tness function as closely
as possible, while being computationally cheaper to evaluate.
These approximate models are built using ML techniques such
as polynomial regression (Singh, Ray, & Smith, 2010), RF (Zhou,
Ong, Nguyen, & Lim, 2005), ANN (Jin & Sendhoff, 2004; Park
& Kim, 2017), SVM (Gonzalez-Juarez & Andrés-Pérez, 2019;
Loshchilov, Schoenauer, & Sebag, 2010), Radial Basis Functions
(RBFs) (Qasem, Shamsuddin, Hashim, Darus, & Al-Shammari,
2013), and Gaussian process models also referred to as Krig-
ing (Knowles, 2006). These ML techniques are trained using
a set of training data, wherein the input variable is a set of
features extracted from the solution instances and the output
variable is the original “tness value of each solution instance.
The aim is then to approximate the “tness value of the new
generated solutions. The approximate model can be created ei-
ther oine or online. A particular use of functional approxima-
tion in MHs is known as surrogate-assisted MHs (Jin, 2011),
wherein the approximate (surrogate) model is iteratively re-
“ned (i.e., online re“ning) during the search process. The “rst
surrogate-assisted MHs were developed for continuous opti-
mization problems, and there are numerous e cient surrogate
modeling techniques for continuous functions (Pelamatti, Bre-
vault, Balesdent, Talbi, & Guerin, 2020). In recent years, they
have also gained attraction for discrete optimization problems
(Bartz-Beielstein & Zaefferer, 2017). Surrogate models are cate-
gorized into single, multi-“delity, and ensemble surrogate mod-
els (Bartz-Beielstein & Zaefferer, 2017).
€ Evolutionary approximation . Itis speci‘cally developed to
deal with EAs. Instead of approximating the “tness function,
the evolutionary approximation aims at reducing the compu-
tational effort by approximating the elements of the EAs. There
are two main sub-categories of evolutionary approximation:
..Fitness inheritance in which the “tness value of an individ-
ual is calculated based on the “tness values of its parents.
For instance, the “tness value of an offspring can be the
(weighted) average of the “tness values of its parents.
..Fitness imitation in which the “tness value of an individ-
ual is calculated using the “tness value of its siblings. Us-
ing ML technigues such as clustering techniques, the popu-
lation is divided into several clusters, and only the represen-
tative individuals of each cluster are evaluated. Afterward,
the “tness values of other individuals are calculated based
on their corresponding representatives in the clusters. Clus-
tering techniques have been widely used for “tness imita-
tion in the literature (Xiang, Tian, Xiao, & Zhang, 2020; Yu,
Tan, Sun, & Zeng, 2017).

Apart from “tness approximation, “tness reduction is another
approach for dealing with computationally expensive “tness func-
tions in multi-objective  optimization problems (Saxena et al.,
2012). Instead of approximating the “tness function, “tness reduc-
tion aims at reducing the number of “tness functions using ML
techniques such as PCA (Saxena et al., 2012) and Feature Selec-
tion (FS) techniques (Lopez Jaimes, Coello Coello, & Chakraborty,
2008) as well as reducing the number of “tness function evalua-
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Table 2
Classi“cation of papers studying “tness evaluation.
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Ref. Fitness evaluation Single/ Multi obj. ML tech. MH CoP
Pathak, Srivastava, and Srivastava (2008) Functional approximation Multi ANN GA PSP
Lépez Jaimes et al. (2008) Fitness reduction Multi FS GA KP
Moraglio, Kim, and Yoon (2011) Functional approximation Single RBF GA QAP
Horng et al. (2013) Functional approximation Single ANN MA ATOP
Nguyen, Zhang, Johnston, and Tan (2014) Evolutionary approximation Single k-NN GA JSP
Hao et al. (2016) Functional approximation Single ANN DE SMSP
Wang and Jin (2018); Zheng, Fu, and Xuan (2019) Functional approximation Multi RF GA KP
Lucas et al. (2020) Functional approximation Single DT VNS VRP

tions by using clustering techniques (Sun, Zhang, Zhou, Zhang, &
Zhang, 2019; Zhang et al., 2016).

In the following, “rst, we review, classify, and analyze the rele-
vant papers, and then the corresponding challenges and future re-
search directions are provided.

5.1 Literature classi“cation & analysis

Table 2 classi“es the papers using ML techniques for “tness
evaluation of COPsbased on different characteristics such as the
“tness evaluation approach, the type of the problem (single/ multi
objective), the employed ML technique, the MH algorithm, and the
COPunder study.

Considering Table 2, it can be seen that there are few stud-
ies applying “tness approximation/reduction to COPs.The reason
is twofold; “rst, for most COPs,there exists an analytical “tness
function whose evaluation is not computationally expensive (Hao
& Liu, 2014), and second, constructing surrogate models for COPs
is a complicated task and several additional issues should be over-
come to create an accurate and reliable surrogate model for COPs
(Pelamatti et al., 2020).

It can be seen from Table 2 that “tness approximation is mostly
used for single-objective COPswhose original “tness function is
calculated by a time-consuming simulation (Hao, Liu, Lin, & Wu,
2016; Horng, Lin, Lee, & Chen, 2013), or an approximate “tness
function is used to help the search to escape from the local optima
(Lucas, Billot, Sevaux, & Sérensen, 2020). There are also studies that
apply “tness approximation to multi-objective COPs.Indeed, it is
more computationally expensive for a MH to evaluate solutions us-
ing multiple “tness functions compared to a single “tness function,
especially when there are too many objective functions.

Table 2 shows that “tness approximation/reduction is mostly
used for EAs (e.g., GA and MA). The main reason is that EAs gen-
erate and evolve a population of solutions at each iteration and it
might be therefore very time-consuming to evaluate every new so-
lution at each iteration of the algorithm. Using “thess approxima-
tion especially becomes crucial when the evaluation of each new
solution is computationally expensive (e.g., using time-consuming
simulation to evaluate a solution (Horng et al., 2013)). This ne-
cessity has led to the development of new EAs called surrogate-
assisted EAs.

5.2. Discussion & future research directions

As all MHs do an iterative process to reach the (near-) optimal
solution, many “tness evaluations are needed to “nd an accept-
able solution. Fitness approximation may help MHs to signi“cantly
reduce their computational effort for computing the “tness value
(Jin, 2005). However, using “tness approximation in MHs is not as
straightforward as one may expect, and it has its own challenges.

One of the major challenges is the accuracy of the approxi-
mate function and its functionality over the global search space
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(Jin, 2005). To replace the original “tness function of a MH with
an approximate function, it has to be ensured that the MH with
the approximate function converges to the (near-) optimal solu-
tion of the original function. However, due to some issues such as
few ftraining data and high dimensionality of the search space, it
is dicult to construct such an approximate function. Therefore, to
overcome this issue, one way is to use both the original and the
approximate “tness function during the resolution of the problem.
This is addressed as model management or evolution control in the
literature (Jin, 2005).

An open question in “tness approximation is choosing the best
suited technique for “tness approximation in COPs.The answer
mainly depends on the COP under study and the useres prefer-
ences; however, due to numerous approximation techniques, se-
lecting the best suited technique a priori is often impossible. In
this regard, the “rst try could be using the simplest technique.
If the performance of the approximate function obtained by the
simplest technique is unsatisfactory or degrades over time, more
sophisticated techniques can be used. A future research direction
could provide a comparative study on the performance of dif-
ferent techniques for approximating the “tness function of COPs.
These techniques may differ from simple techniques such as “t-
ness inheritance or k-NN to more sophisticated ones such as poly-
nomial regression, Kriging, RBF,and clustering/classi‘cation tech-
niques (Shi & Rasheed, 2010). Usually more complex methods pro-
vide better “tting accuracy but need more construction time. An-
other way to answer this open question is using ensemble surrogate
modeling that aggregates several surrogate models.

Apart from “tness approximation, another aspect that deserves
to be explored more in the future is online “tness generation,
wherein new objectives are targeted depending on the status of
the search process. The new “tness function is generated based on
some knowledge of the optimization problem at hand, as well as
the features extracted from the visited regions during the search
process. For instance, a set of representative features of the good
solutions for the COPat hand can be extracted during the search
process to form a new objective, and once the MH gets trapped
in a local optimum, the original “tness function is replaced by the
new one. During the search process, the original and the new “t-
ness function can interchange to guide the MH toward promising
solutions (Lucas et al., 2020). Another example of online “tness
generation in MHs can be found in GLSthat modi‘es the origi-
nal “tness function when trapped in a local optimum (Voudouris
& Tsang, 2003). Such a modi“‘cation is done by adding a set of
penalty terms to the original “tness function. Whenever the GLS
gets stuck in a local optimum, the penalties are modi“ed and the
search process continues to optimize the transformed “tness func-
tion.

Real-time COPsare those COPsthat need to be solved regularly
(e.g., every hour or every day) under a time limitation. For these
problems, the computational time spent even in one iteration of
MHSs, especially population-based MHs, may be too long for real-
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time applications. Therefore, to cope with real-time COPs,espe-
cially large-scale COPs,one future research direction is to employ
“tness approximation to lower the computational effort of “tness
evaluation.

6. Initialization

There are three main strategies for generating initial solutions
for MHs: random, greedy, and hybrid strategies (Talbi, 2009). In the
random strategy, an initial solution is generated randomly, regard-
less of the quality of the solution. In the greedy strategy, a solution
is initialized with a good-enough quality. Finally, the hybrid strat-
egy combines two random and greedy strategies. There is always
a trade-off between the use of these strategies in terms of explo-
ration and exploitation. Indeed, the way of initializing a MH has a
profound impact on its exploration and exploitation abilities. If the
initial solutions are not well diversi“ed, a premature convergence
may occur, and the MH gets stuck in local optima. On the other
hand, starting from low quality solutions may take a larger number
of iterations to converge. In this regard, ML techniques can be used
not only to maintain the diversity of solutions but also to produce
initial solutions with good quality. ML techniques can contribute to
the initialization through three major strategies:

€ Complete generation . Asa low-level integration, ML tech-
nigues can replace the solution generation strategies to con-
struct the initial solution on their own. Indeed, ML techniques
are used to construct a complete solution from an empty so-
lution. The main ML techniques used in this category are RL-
based techniques such as QL (Khalil, Dai, Zhang, Dilkina, &
Song, 2017; dos Santos et al., 2014), ANN (Bengio, Frejinger,
Lodi, Patel, & Sankaranarayanan, 2020), and Opposition-based
Learning (Rahnamayan, Tizhoosh, & Salama, 2008).

€ Partial generation ... Asa low-level integration, ML techniques
are used to generate partial initial solutions using the apriori
knowledge of good solutions. Then, the remaining part of the
solution can be generated using any of the initialization strate-
gies. ML techniques extract knowledge from previous good so-
lutions and inject it into the new initial solutions (Li & Olaf-
sson, 2005; Nasiri, Salesi, Rahbari, Meydani, & Abdollai, 2019).
This knowledge is mostly in the form of ARs,which characterize
the properties of good solutions. Apriori algorithms are widely
used to extract the rules in ARs (Li, Chu, Chen, & Xing, 2016).
Another example is case-based initialization strategy (Louis &
McDonnell, 2004) derived from the idea of Case-BasedReason-
ing (CBR),in which the initial solutions are generated based on
the solutions of already solved similar instances.

€ Decomposition ... Asa problem-level integration, the decompo-
sition is done either in the data space or in the search space. In
data space decomposition, ML techniques are used to decom-
pose the data space into several sub-spaces and consequently
facilitate generating initial solutions by reducing the required
computational effort. In this regard, an initial solution is gener-
ated for each sub-space using any of the initialization strategies,
and “nally a complete solution is constructed from the par-
tial solutions of the sub-spaces (Ali, Essam, & Kasmarik, 2020;
Chang, 2017; Min, Jin, & Lu, 2019). In search space decompo-
sition, ML techniques are used to diversify the initial solutions
over the search space, where different solutions represent dif-
ferent regions of the search space. For example, the problem
of selecting the sub-regions of the search space to explore can
be formulated using the Multi-armed Bandit (MAB) technigue,
wherein each arm represents a region of the search space, and
the technique learns which regions worth exploring further and
which are not (Catteeuw, Drugan, & Manderick, 2014).
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Depending on how ML techniques are employed in generating
the initial solutions, learning can occur either oine or online. In
oine learning, knowledge is gathered from the initial solutions
generated for a set of training instances with the aim to gener-
ate initial solution(s) for a new problem instance. The properties
of those good initial solutions that led to a better performance
are extracted and used to generate promising initial solution(s)
for a new problem instance. Although an oine learning can pro-
vide rich knowledge, it might be very time-consuming, and the ex-
tracted knowledge might not be useful enough when applied to a
new problem instance with completely different properties com-
pared to the training instances. On the contrary, in online learning,
knowledge is extracted and employed dynamically while generat-
ing the initial solution(s) for a problem instance. Although the ex-
tracted knowledge might not be that rich, it completely suites the
instance at hand. In the rest of this section, the relevant papers
are reviewed and analyzed and the corresponding challenges along
with future research directions are provided.

6.1. Literature classi“cation & analysis

Table 3 classi“es the papers generating initial solutions for COPs
using ML techniques based on different characteristics such as the
initialization  strategy, learning mechanism, the used ML technique,
the MH algorithm for which the initialization is performed, the COP
under study, and the size of the training set in caseof oine learn-
ing.

Considering Table 3, RL, particularly QL is a widely used tech-
nique to generate complete initial solutions. QL can be counted
as a hybrid initialization strategy that balances exploration and
exploitation abilites of a MH through its parameters. QL con-
structs the solutions successively by exploiting the knowledge of
the search space using the reward matrix. Taking TSPas an exam-
ple, QL starts construction with a random city and proceeds with
the cities which bring the maximum reward, where the reward is
representative of the problemes objective function (e.g.,the reward
is inversely related to the distance from the current selected city
to the next potential city). The superiority of QL over other typical
initialization strategies in terms of the quality of the solutions and
convergence rate of the algorithm has been illustrated for TSP by
dos Santos et al. (2014).

Table 3 shows that the decomposition strategy is mostly used
for routing-based COPs including VRP and TSP. Clustering algo-
rithms such as k-means are the widely used ML techniques in
these studies, where the cities are clustered into several groups,
and an initial solution is obtained by using a greedy strategy for
each group. Finally, a complete path connecting different groups is
created.

6.2. Discussion & future research directions

In the integration of ML techniques into MHs for generating ini-
tial solutions, the simplicity of the classical random and greedy
strategies is sacri‘ced to gain better performance in terms of the
trade-off between exploration and exploitation through more ad-
vanced initialization strategies (i.e., complete generation, partial
generation and decomposition). The integration of ML techniques
into initialization of MHs has been reported to lead to an improve-
ment in the convergence rate of MHs when better solutions have
been found in less computational efforts compared to classical ran-
dom and greedy strategies (Ali et al., 2020; Hassanat, Prasath, Ab-
badi, Abu-Qdari, & Faris, 2018; Louis & McDonnell, 2004; dos San-
tos et al., 2014). These improvements have been more expressive
when solving larger instances of COPsas MHs start with already
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Table 3

Classi“cation of papers studying initialization.
Ref. Strategy Learning ML tech. MH CoP Size
Louis and McDonnell (2004) Partial generation Oine Apriori GA JSP 50
Li and Olafsson (2005) Partial generation Oine DT MHs JSP 19,900
de Lima Junior, de Melo, and Neto (2007); Complete generation Online QL GRASP,GA TSP
De Lima, De Melo, and Neto (2008);
dos Santos, de Lima Junior, Magalhdes, de Melo, and Neto (2010)
Diaz-Parra, Ruiz-Vanoye, and Zavala-Diaz (2010); Decomposition Online k-means GA VRP
Haghighi, Zahedi, and Ghazizadeh (2010)
dos Santos et al. (2014) Complete generation Online QL VNS TSP
Catteeuw et al. (2014) Decomposition Online MAB HC QAP
Deng, Liu, and Zhou (2015) Decomposition Online k-means GA TSP
Zhou et al. (2016) Complete generation Online RL DLS GCP
Li et al. (2016) Partial generation Online Apriori GA TSP
Xiang and Pan (2016); Decomposition Online k-means ACO VRP
Zhang (2017)
Gao, Wang, Cheng, Inazumi, and Tang (2016) Decomposition Online k-means ACO LRP
Khalil et al. (2017) Complete generation Online QL MHs TSP
Chang (2017) Decomposition Online k-means ACO TSP
Hassanat et al. (2018) Decomposition Online LR GA TSP
L6pez-Santana, Rodriguez-Vasquez, and Méndez-Giraldo (2018) Decomposition Online k-means ACO WSRP
Alipour, Razavi, Derakhshi, and Balafar (2018) Complete generation Online RL GA TSP
Miki, Yamamoto, and Ebara (2018) Partial generation Oine DRL MHs TSP 2,000,00
Ali, Essam, and Kasmarik (2019) Decomposition Online k-means GA, DE TSP
Gocken and Yaktubay (2019) Decomposition Online k-means GA VRP
Min et al. (2019) Decomposition Online k-means TS VRP
Nasiri et al. (2019) Partial generation Oine Apriori GA, PSO JSP 35
Bengio et al. (2020) Complete generation Oine LR, ANN MHs FLP 45,000
Lodi, Mossina, and Rachelson (2020) Partial generation Oine LogR, ANN, NB MHs FLP 7145
Ali et al. (2020) Decomposition Online k-means DE TSP
Cheng, Pourhejazy, Ying, and Lin (2021) Decomposition Online k-means ABC JSP

a (set of) good initial solution(s) (Hassanat et al., 2018; dos Santos
et al.,, 2014). This phenomenon saves the computational effort to-
ward exploring/exploiting more promising regions in the solution
space instead of spending extensive efforts to “nd primary good
(local) solutions during the search process.

These advanced initialization strategies bring their own chal-
lenges. An important challenge is the complexity of using such
advanced techniques with additional parameters that need to be
carefully tuned to get the highest performance. A set of other chal-
lenges arises depending on the way solutions are initialized. For
instance, a big challenge when using QL is how to de“ne the set of
states and actions so that they satisfy the properties of a Markov
decision process. One of the main requirements is to de“ne a set
of states such that it is sucient to characterize the system with-
out the need for the history of information achieved so far. Taking
TSPas an example, if one considers the state as the currently se-
lected city and the action asthe next city to be added to the tour,
the state is not sucient to characterize the system, and an action
depends on the information on the history of the states.

As a new concept in ML and inspired from the opposite re-
lationship among entities, Opposition-based Learning can provide
ecient strategies to generate the initial population. Using this
concept, the initial population is approximated from two opposite
sides (Rahnamayan et al., 2008), wherein an initial population is
“rst generated randomly. Next, an opposite population in terms of
values of the solution vector is generated to the randomly gener-
ated population. The MH then merges the two populations and se-
lects half of the best solutions to form the initial population. The
main aim of opposition-based learning is keeping the diversity be-
tween the initial solutions to increase the exploration ability of
the MHSs. In addition to opposition-based learning, an interpolation
technique can be also used to generate the initial population. This
technique attempts to provide good solutions by interpolating a
set of randomly generated solutions. The interpolated solutions are
then used to form the initial population. Neither opposition-based
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learning nor interpolation have been applied to COPs. Therefore,
using these techniques and other advanced ML techniques such as
ANNSs (Yalcinoz & Altun, 2001) to generate the initial solutions of
COPscould be a future research direction.

7. Evolution

ML techniques can be integrated into the evolution process in
three major ways:

€ ML techniques help to use feedback information on the perfor-
mance of the operators during the search process to select the
most appropriate operator (see Section 7.1).

€ ML techniques provide a learning mode to generate new popu-
lations in EAs (see Section 7.2).

€ ML techniques help to extract the properties of good solutions
to generate new solutions (see Section 7.3).

7.1. Operator selection

Operator selection has its roots in hyper-heuristics. The term
hyper-heuristic can be de“ned as a high-level automated search
methodology which explores a search space of low-level heuristics
(i.e., neighborhood or search operators) or heuristic components,
to solve optimization problems (Burke et al., 2013). Regarding the
nature of the heuristic search space, hyper-heuristics are classi-
“ed into heuristic selection and heuristic generation methodologies
(Drake, Kheiri, Ozcan, & Burke, 2019). The former aims at select-
ing among a set of heuristics, while the latter aims at generating
new heuristics. Operator selection inherently belongs to heuristic
selection methodologies in hyper-heuristics; however, it has been
also used in designing MHs (Mosadegh et al.,, 2020; dos Santos
et al.,, 2014). Accordingly, it has led to a certain level of confu-
sion in the literature in distinguishing MHSs involving operator se-
lection from hyper-heuristics. Despite the differences between the
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design and performance of hyper-heuristics and MHSs, operator se-
lection in both methods targets the same goal as selecting and ap-
plying (an) appropriate operator(s) during the search process. In
this paper, the focus is on MHs involving operator selection. In
this regard, a MH called adaptive large neighborhood search, an
extension to the classical large neighborhood search, has been de-
veloped with the particular aim of selecting operators during its
search process. A meta-analysis on adaptive large neighborhood
search MHs has been provided by Turkee, Sérensen, and Hvattum
(2020). Apart from adaptive large neighborhood search, this paper
focuses on operator selection in all other types of MHs.

The main motivation of operator selection comes from the fact
that individual operators may be particularly effective at certain
stages of the search process, but perform poorly at others. In-
deed, the search space of COPsis a non-stationary environment
including different search regions with dissimilar characteristics, in
which different operators (or different con“gurations of the same
operator) show different behavior, and only a set of them works
well in each region (Fialho, 2010). Therefore, solving COPsusing
a single operator does not guarantee the highest performance in
“nding (near-) optimal solutions. Hence, it is reasonable to ex-
pect that employing different operators combined in an appropri-
ate way during the search process will produce better solutions.

Through designing hyper-heuristics or MHs with multiple
search operators, we can take advantage of several operators with
different performances by switching between them during the
search process. In addition, an appropriate implementation of dif-
ferent operators signi“cantly affects the exploration and exploita-
tion abilities of a MH and provides an Exploration-Exploitation  bal-
ance during the search process. In designing such algorithms, there
are two important decisions to make: 1) which operator (among
multiple operators), and 2) which settings to select and apply at
each stage of the search process. The former is discussed in this
section while the latter will be explained in Section 8.

Search operators are divided into four Mutational/Perturbation
Operators (MPOSs), Ruin-Recreate Operators (RROs),Local Search or
Hill-Climbing Operators (LSOs), and Crossover or Recombination
Operators (XROSs) categories (Ochoa & Burke, 2014; Talbi, 2009).

ML techniques help the operator selection to use feedback in-
formation on the performance of the operators. In this situation,
operators are selected based on a credit assigned to each operator
(i.e., feedback from their historical performance). Considering the
nature of the feedback, the learning can be oine or online. In of-
"ine learning, ML techniques such as case-based reasoning (Burke,
Petrovic, & Qu, 2006) help to gather knowledge in the form of rules
from a set of training instances with the aim to select operators in
new problem instances. However, in online learning, knowledge is
extracted and employed dynamically while solving a problem in-
stance (Burke et al., 2019; Talbi, 2016). The use of online feedback
from the search environment to dynamically select and apply the
most appropriate operator during the search process is referred to
as Adaptive Operator Selection (AOS) (Fialho, 2010). AOSaims at se-
lecting the most appropriate operator at each stage of the search
process while solving a problem instance. AOS gives the chance to
adapt MHs behavior to the characteristics of the search space by
selecting their operators during the search process based on their
historical performance. AOS consists of “ve main steps:

€ Performance criteria identi“cation ... Whenever an operator
is selected and applied to a problem instance, a set of feed-
back information can be collected that represents the perfor-
mance of the operator. This feedback can be different perfor-
mance criteria such as OFV, Diversity of Solutions (DOS), CT,
and Depth of the Local Optima (DLP). The credit of an opera-
tor highly depends on how the performance criteria are iden-
ti‘ed and assessed.This makes performance criteria identi“‘ca-
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tion an important step in AOS. Therefore, in solving COPs,the
performance criteria should be eciently identied and inte-
grated (in case of multiple criteria) to lead the MH toward the
optimal solution.

€ Reward computation ... Oncethe performance criteria are iden-
ti“ed, this step computes how much the application of each op-
erator improves/deteriorates the performance criteria.

€ Credit assignment (CA) ... Inthis step, a credit is assigned
to an operator based on the rewards calculated in the re-
ward computation step. There are different credit assignment
methods including Score-based CA (SCA) (Peng, Zhang, Gaj-
pal, & Chen, 2019), Q-Learning based CA (QLCA) (Wauters, Ver-
beeck, De Causmaecker, & Berghe, 2013), Compass CA (CCA)
(Maturana, Fialho, Saubion, Schoenauer, & Sebag, 2009), Learn-
ing Automata based CA (LACA) (Gunawan, Lau, & Lu, 2018),
Average CA (ACA) (Fialho, 2010), and Extreme Value-based CA
(EVCA) (Fialho, 2010) presented in Table 4.

€ Selection ... Oncea credit has been assigned to each opera-
tor, AOS selects the operator to apply in the next iteration.
Different selection methods including Random selection (RS),
Max-Credit Selection (MCS), Roulette-wheel Selection (RWS)
(Gunawan et al., 2018), Probability Matching Selection (PMS)
(Fialho, Da Costa, Schoenauer, & Sebag, 2008), Adaptive Pur-
suit Selection (APS) (Fialho et al., 2008), Soft-Max Selection
(SMS) (Gretsista & Burke, 2017), Upper Con“dence Bound Multi-
Armed Bandit Selection (UCB-MABS) (Fialho et al., 2008), Dy-
namic Multi-Armed Bandit Selection (D-MABS) (Maturana et al.,
2009), Epsilon Greedy Selection (EGS)(dos Santos et al., 2014),
and Heuristic-based Selection (HS) (Choong, Wong, & Lim,
2018) are presented in Table 5.

€ Move acceptance ... Afterthe application of an operator, AOS
decides whether to accept the move provided by the opera-
tor or not. Different move acceptance methods including All
Moves Acceptance (AMA), Only Improvement Acceptance (OIA),
Naive Acceptance (NA), Threshold Acceptance (TA), Metropolis
Acceptance (MA) (Metropolis, Rosenbluth, Rosenbluth, Teller, &
Teller, 1953), Probabilistic Worse Acceptance (PWA), Simulated
Annealing Acceptance (SAA) (Mosadegh et al., 2020), and Late
Acceptance (LTA) are listed in Table 6.

7.11. Literature classi“cation & analysis

Table 7 classi“es the papers studying AOS for COPsbased on
different characteristics such as performance criteria, credit assign-
ment method, selection method, move acceptance method, the MH
algorithm, type of the operators to be selected, and the COPunder
study.

Considering the performance criteria, Table 7 indicates that all
reviewed papers rely on OFV as the criterion used for evaluat-
ing the operators. In the meantime, only few papers have incor-
porated other criteria such as CT and DOS into their evaluation
process (Di Tollo, Lardeux, Maturana, & Saubion, 2015; Maturana
et al., 2009; Maturana & Saubion, 2008; Sakurai, Takada, Kawabe, &
Tsuruta, 2010; Sakurai & Tsuruta, 2012). Although OFVis the most
straightforward criterion by which the operators can be evaluated,
DOSis also needed to avoid premature convergence (Di Tollo et al.,
2015).

By looking at Table 7, it can be seen that among the credit as-
signment methods, RL-based methods (e.g., simple SCAand QLCA)
have been mostly studied. Among the studied credit assignment
methods, the ACA method is biased toward conservative strategies.
Indeed, using this method, the operators with frequent small im-
provements are preferred over operators with rare but high im-
provements. Despite the ACA method, the EVCA method assumes
that rare but high improvements are even more important than
frequent but moderate ones (Fialho et al., 2008). Using the EVCA
method, the operators are credited based on the maximum im-
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Table 4
Credit assignment methods.

Method Description

SCA As a simple version of RL,it assigns an initial score (credit) to each operator and updates their credits based on their performance at
each step of the search process. Generally, initial credits are set to a same value, typically zero.
Gie1= G+ iy
where G, and r;; are the credit and the reward of operator i at time (step) t.

QLCA It assigns a Q-value (credit) to an operator (action) at each state of the search process based on its previous performance.
Q(s.a)= Q(s.a)+ [r+ max, Q(s.1,a)3Q(s.a)]
where s is the state at time t, s.; is the new state at time t + 1, a is the operator selected in state s, a is a possible operator in state
S+1, It is the reward (punishment) received after selecting operator a at time t, is the learning rate, and is the discount factor
which indicates the importance of future rewards.

CCA It integrates three measures at every application of an operator: population diversity variation, mean “tness variation, and execution
time. A sliding window stores the last W changes in terms of diversity and “tness. A compromised value is then calculated between the
diversity and “tness measures. Finally, the compromised value is divided by the operatorss execution time to obtain the “nal credit of
each operator.

LACA It assigns a probability value to each operator based on its previous performance. The following formulations show the selection
probabilities (credits) of successful and unsuccessful operators, respectively.

Pieer = Piet (1S p)S 2(1S fi,t)ng

Pirr = Pie S afiePiet 218K )I(KS 1)1 S ]

where pj; is the selection probability of operator i at time t, ; and , refer to the learning rates used to update the selection
probabilities, and K is the number of operators.

ACA It assigns credit to each operator according to its performance achieved by its last W applications (Instantaneous credit assignment if
W=1). Using W as the size of the sliding window for each operator, the performance of an operator is aggregated over a given time
period.

EVCA It follows the principle that infrequent, yet large improvements in the performance criteria are likely to be more effective than
frequent but moderate improvements. At each application of an operator, the changes in the performance criteria are added to a
sliding window of size W following a FIFOrule and the maximum value within the window is assigned as a credit to that operator.
Despite the ACA, this method emphasizes on rewards to the operators with recent large improvements even once throughout their last
W applications.

G = max; =eaw,....{rit }
Table 5

Selection methods.

Method Description

RS It uniformly selects an operator at random, ignoring the credit values.
Pit = %
where K is the number of operators.

MCS It selects an operator with the maximum credit.

RWS It assigns a selection probability p;; to operator i at time t based on its proportional credit, and selects an operator randomly based on
these probabilities. The more the credit of an operator, the more the chance to be selected.

Pit+1 = ri‘cﬂ
where G, is the assigned credit of operator i at time t, and K is the number of operators.

PMS It assigns a selection probability to each operator based on its proportional credit, while keeping a minimum selection probability for

all operators to give them a chance to be selected regardless of their credit.

Pit+1 = Pmin + (:I-é Kx pmin) »fi‘c“

where ppin is the minimum selection probability of each operator, K is the number of operators, and G is the assigned credit of
operator i at time t.

APS Instead of proportionally assigning probabilities to all operators, it selects the operator with the maximum credit, increases its

probability, and reduces the probabilities of all other operators. Operator i is selected as follow:
Pirr = Piet (LS (KS1)pmin S pig)( >0) i =arg max{G}
Pitr1 = Piet  (Pmin S Pit) otherwise

where the notations are similar to PMSand s the learning rate.

SMS It uses a Boltzmann distribution to transform the credit of each operator to a probability, and involves a temperature parameter to
amplify or condense the differences between the operator probabilities. It uniformly selects an operator based on the probability
values. As long as the temperature decreases, this method becomes more greedy towards selecting the best available operator.
Pit+1 = %

UCB-MABS It assigns‘a cumulative credit to each operator and selects the operator with the maximum value of:
G.+G log nT:‘] njc
where n;; denotes the number of times the ith arm has been played up to time t and G is the Scaling factor used to properly balance
rewards and application frequency (Exploration-Exploitation balance) while still maintaining a small selection probability of other
operators for exploration purposes.

D-MABS It adapts the classical multi-armed bandit scenario to a dynamic context where the reward probability of each arm is neither
independent nor “xed. To address the dynamic context, the classical UCB (Auer, Cesa-Bianchi, & Fischer, 2002) algorithm is combined
with a Page Hinkley test (Page, 1954), to identify the change of reward probabilities.

EGS It selects the operator with the highest credit with probability of (1S ); otherwise, it selects an operator randomly.

[ = arg max;Cy with probability 18
any other operator with probability
HS It uses either heuristic rules or optimization algorithms to select the operators. A heuristic rule can be a tabu list of operators to

exclude them from being selected during a certain number of iterations. On the other hand, the sequence of operators can be de“ned
as a decision variable and optimization algorithms (e.g., MHs) are employed to “nd the optimal sequence.
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Table 6
Move acceptance methods.
Method Description
AMA It always accepts the applied move regardless of whether the move improves the solution or not.
OIA It only accepts the moves that improve the solution.
NA It always accepts the moves that improve the solution and considers an acceptance probability of 0.5 for moves that deteriorate the
solution.
TA It always accepts the moves that improve the solution and accepts the moves that deteriorate the solution less than a pre“xed
threshold (in terms of the solution quality).
MA It accepts each move with a probability of er,
where  f is the difference between the “tness values before and after applying that move, and T denotes the temperature. The higher
the value of T, the higher the chance to accept worse moves and vice versa.
f
PWA As a variant of Metropolis acceptance, it accepts each move with a probability of e Hmer |
where Win, is the average of previous improvements on the solution quality.
fw _ tmax
SAA As a variant of Metropolis acceptance, it accepts each move with a probability e(”‘"“w e Steurent ),
wherein the temperature T decreases gradually over time. In addition, tmax denotes the maximum time allowed to execute the
algorithm, and teyrent denotes the current elapsed time.
LTA It accepts a move that provides a solution with better or equal quality compared to the obtained solutions in the last n iterations.
During the initial n iterations, any move that provides a better solution compared to the initial solution is accepted.
Table 7

Classi“cation of papers studying AOS.

Ref. Perf. criteria Credit asnt. Selection Move acpt. MH Operator COP
Pettinger and Everson (2002) OFV SCA MS OIA GA MPO, XRO TSP
Maturana and Saubion (2008) OFV,DOS,CT CCA PMS OIA GA MPO, XRO SAT
Maturana et al. (2009) OFV,DOS,CT CCA,EVCA D-MABS OIA GA MPO, XRO SAT
Sakurai et al. (2010); OFV,CT QLCA SMS OIlA GA MPO, XRO TSP
Sakurai and Tsuruta (2012)

Francesca, Pellegrini, Stiitzle, and Birattari (2011) OFV EVCA APS,PMS OIA MA XRO QAP
Burke, Gendreau, Ochoa, and Walker (2011) OFV,FT EVCA APS,RWS AMA ILS MPO, XRO, RRO,LSO FSP
Walker, Ochoa, Gendreau, and Burke (2012) OFV EVCA APS AMA-OIA ILS MPO, XRO, RRO,LSO VRP
Handoko, Nguyen, Yuan, and Lau (2014) OFV QLCA PMS, APS OIA MA XRO QAP
dos Santos et al. (2014) OFV QLCA EGS OIA VNS LSO TSP
Consoli and Yao (2014) OFV,DOS CCA D-MABS OIA MA XRO ARP
Buzdalova, Kononov, and Buzdalov (2014) OFV QLCA EGS,SMS OIA EA MPO, XRO TSP
Yuan, Handoko, Nguyen, and Lau (2014) OFV SCA APS,D-MABS OIA MA XRO QAP
Di Tollo et al. (2015) OFV,DOS,CT CCA PMS OIA EA XRO SAT
Li, Pardalos, Sun, Pei, and Zhang (2015) OFV ACA RWS OIA, AMA ILS MPO, LSO VRP
Li and Tian (2016) OFV SCA RWS OIA VNS LSO VRP
da Silva, Freire, and Hondrio (2016) OFV QLCA APS OIA EA MPO, XRO TEPP
Mohammadi, Tavakkoli-Moghaddam, Siadat, and OFV SCA RWS OIA ICA XRO HLP
Dantan (2016)

Chen et al. (2016) OFV SCA UCB-MABS OIA VNS LSO VRP
Zhalechian, Tavakkoli-Moghaddam, Zahiri, and OFV SCA RWS OIA GA MPO, XRO LRP
Mohammadi (2016)

Gretsista and Burke (2017) OFV ACA UCB-MABS SAA ILS MPO NRP
Gunawan et al. (2018) OFV LACA RS,RWS OIA, SAA ILS LSO OoP
Ahmadi et al. (2018) OFV,DOS QLCA EEGS OIA GA MPO, XRO SSP
Mohammadi, Jula, and Tavakkoli-Moghaddam OFV SCA RWS OlA GA MPO, XRO HLP
(2019)

Peng et al. (2019) OFV SCA RWS OIA MA LSO VRP
Lu, Zhang, and Yang (2019) OFV SCA RWS OIA ILS MPO, LSO VRP
Mosadegh et al. (2020) OFV QLCA EGS SAA SA LSO MASP
Zhao et al. (2021) OFV QLCA EGS OIA WWO  MPO FSP

provement during their last W applications. In order to avoid the
premature convergence, the CCA method has incorporated DOS
into its evaluation process. This method takes into consideration
both the OFV and DOS, which are related to the exploitation and
exploration abilities of MHs, respectively. The ACA, EVCA,and CCA
methods assign credit to the operators based on their immediate
performance (through the last W applications). This may rise the
possibility that the optimization is short sighted.

On the other hand, RL-based methods including the SCA,QLCA,
and LACA methods assign credit to the operators based on their
performance from their very “rst application. Indeed, they are able
to learn a policy to maximize the rewards in a long-term prospect,
which makes it possible to gain optimal operator selection poli-
cies. In addition to a long-term prospect, some RL-based meth-
ods such as QL are model-free that do not require the complete
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model of the system including the matrix of transition probabil-
ittes and the expected value of the reward for each state-action
pair. This is especially useful for COPssince generally, a complete
model is not available for COPs(Wauters et al., 2013). Furthermore,
many RL-based methods are able to converge to the optimal state-
action pair under several conditions. Among these methods, QL has
proven to converge to the optimal state-action pair under three
conditions: the system model is a Markov decision process, each
state-action pair is visited many times, and the immediate reward
given to each action is not unbounded (i.e., limited to some con-
stant) (Watkins, 1989). Among the RL-based methods in Table 7,
the techniques based on Temporal Differences such as QL take ad-
vantage of the concept of delayed reward. They are based on the
assumption that there might be a delay before the effect of an ac-
tion appears. Accordingly, they consider a delayed reward in addi-
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Fig. 4. Exploration vs. Exploitation of selection methods.

tion to an immediate reward. On the other hand, the LACA method
(Gunawan et al., 2018) and the SCAmethod (Chen, Cowling, Polack,
& Mourdjis, 2016) work in a single state environment and merely
take into account an immediate reward.

The selection step decides which operator to apply in the next
iteration. This step can also be seen as an exploration and exploita-
tion dilemma, where there is a need to be a trade-off between se-
lecting the best operator with the best performance so far (i.e., ex-
ploitation), and giving a chance to the other operators which may
bring the best performance from then (i.e., exploration). Fig. 4 il-
lustrates how different selection methods balance exploration and
exploitation abilities of a MH. For each selection method, the re-
sponsible parameters and their corresponding effects for making
such balance have been also identi‘ed. For example, in the APS
method, increasing the parameters p., and augments the ex-

ploration ability of the method, while decreasing pn, and in-
creases the exploitation ability of the method.
As it can be seen in Fig. 4, the MCS method is a purely

exploitation-based method where there is no chance for exploring
other operators. In other words, the MCS method selects the oper-
ator with the maximum credit at each iteration, giving no chance
to other lower quality operators to be selected.

The RWS method selects the operators based on their propor-
tional credit, where there is also a chance for all operators to be
selected. However, using the RWS method, operators which do not
show good performance during a long time, have very low or even
zero chance to be selected, while they might perform well in the
latter stages of the search process. To tackle this issue, the PMS
method assigns a minimum selection probability to each opera-
tor, pmin. regardless of its performance. This preserves the balance
between exploration and exploitation thorough a minimal level of
exploration that is kept “xed during the search process. Indeed,
the selection probability of operators with zero credit slowly con-
verges to ppi, - In this way, the operators with even moderate per-
formance keep being selected, and this degrades the performance
of this method (Maturana et al., 2009). To address this drawback,
the proposed APSmethod updates the selection probabilities using
the winner-takes-all strategy. Indeed, instead of updating the prob-
abilities based on operatorse proportional credit, the APS method
increases the selection probability of the best operator while de-
creasing the selection probability of all other operators. This aims
at quickly enhancing the application probability of the current best
operator (Fialho, 2010). Considering the trade-off between explo-
ration and exploitation, this method keeps a minimal level of ex-
ploration through pp,i,, Which is “xed throughout the search pro-
cess.

In the SMS method, the balance between exploration and ex-
ploitation is controlled through a temperature parameter, . As
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the temperature increases, the selection probabilities tend to be
equal for all operators. While decreasing the temperature leads to
a larger difference between selection probabilities. In an extreme
viewpoint, when the temperature goes to zero, SMS becomes a
purely exploitation-based method where only the best operator is
selected. The UCB-MABS method also makes a trade-off between
the exploration and exploitation abilites of a MH by keeping a
minimum  selection probability for each operator to be selected
log }f:ln“
n.

through G , where G is a scaling factor to balance the

trade-off. Similarly, the EGSmethod controls the trade-off between
exploration and exploitation using the prede“ned parameter . In-
creasing increases the exploration ability of the algorithm by
giving a chance to the other operators to be selected, while de-
creasing favors the selection of the best operator. Accordingly,
when = 1, the EGSmethod becomes a purely exploration-based
method. Finally, the HS method uses a heuristic rule to select op-
erators. For instance, the rule could be a tabu list of operators that
excludes successful operators from being selected during a certain
number of iterations. The size of the tabu list makes a balance be-
tween exploration and exploitation. As the tabu size increases, the
successful operators remain longer in the tabu list, giving a chance
to other operators to be selected, which leads the method toward
exploration.

Table 7 indicates that AOSis mostly applied to EAs (e.g., GA and
MA) to select the mutational and crossover operators. The reason
may rely on the popularity of EAs for solving COPsand the avail-
ability of a variety of problem-speci“‘c mutational and crossover
operators, which needs to be carefully selected during the search
process since the performance of EAsis highly affected by its op-
erators. In the meanwhile, AOS is also applied to select the local
search operators in ILS and VNS.

7.1.2. Discussion & future research directions

In this section, “rst, a guideline is provided for researchers on
when to use AOS,and the fundamental requirements of using AOS
are identi“ed. Next, challenges and future research directions are
discussed.

There is a rise in the number and variety of problem-speci‘c
operators (heuristics) for e ciently solving optimization problems.
Selecting and applying these operators within a MH requires much
expertise in the domain. That is especially the case for COPswith
plenty of proposed problem-speci‘c operators where the classi-
cal operators are not as competent as problem-speci“‘c ones. In-
deed, for COPswith standard representations (e.g., permutation-
based representations), users can make the use of classical non-
specialized operators, which does not necessarily require much ex-
pertise. However, for COPsout of this standard framework, one
must have knowledge over the problem-speci“‘c operators to ef-
“ciently select the operators. This issue highlights the necessity of
an automatic approach to select the most appropriate operator(s)
based on their performance without having an expertise in the do-
main. In this way, even inexperienced users are able to select ap-
propriate operators for solving COPs.In addition, AOSis most use-
ful when dealing with several competitive state-of-the-art opera-
tors for solving a COP such that none of them can be preferred
over the others a priori, and choosing the best operator exhaus-
tively is computationally expensive. In this condition, there is a
need for automatic operator selection.

There are a set of speci‘c requirements for the QLCAmethod as
the most common RL-based method used in AOS. Before applying
the QLCAmethod in AOS, one needs to de“ne the set of possible
states and actions. In de“ning the states, the following precondi-
tions should be checked:
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€ The states should be completely descriptive of the problem sta-
tus to allow selecting the correct action. There are three ways
to de“ne the states. The states could be 1) search-dependent
that re’ect the properties of the search process such as the
number of non-improving iterations, 2) problem-dependent

that re”ect the properties of the problem through generic fea-
tures, or 3) instance-dependent that re’ect the properties of
the problem instance such asthe number of bins in a bin pack-
ing problem (Wauters et al., 2013).

The states should be de“ned in such a way that do not grow
exponentially and allow the algorithm to visit each state-action

pair many times. This is one of the main conditions of QLCA
method convergence. For instance, if the number of states
grows exponentially with the size of the problem, the algorithm

might need to be executed more times to satisfy the conver-
gence condition.

L)

The integration of ML techniques into AOS has led to an im-
provement in terms of both solution quality and even computa-
tional time. Using advanced ML techniques in AOS such as QLCA
(Ahmadi, Goldengorin, Suer, & Mosadegh, 2018; Mosadegh et al.,
2020; Zhao, Zhang, Cao, & Tang, 2021) and LACA (Gunawan et al.,
2018) has brought signi“cant improvements compared to the non-
learning version of MHs. Besides, even new best-known solutions
have been obtained for certain COPs (Ahmadi et al., 2018; Gu-
nawan et al., 2018). More interestingly, such integration has been
reported to be more e cient as the size of the problem instances
increases, and the proposed MHs have shown more stable behav-
ior when solving larger COPinstances (dos Santos et al., 2014; Zhao
et al., 2021).

Apart from the advantages that AOS brings into application, a
set of important challenges arises in this regard. The “rst challenge
is related to the computational overhead of learning in the MHs.
Although AOS gives the user the “exibility to adapt the MHes be-
havior to the characteristics of the search space by selecting its op-
erators during the search process, achieving such "exibility adds an
extra computational overhead. Keeping track of the performance of
the operators during the search process, assigning credits to them,
and updating their selection probabilities all impose an extra com-
putational overhead. This overhead can be compensated by an op-
timal design of the AOS mechanism wherein the MH converges
sooner to the (near-) optimal solution, and consequently the saved
computational time compensates the extra overhead.

Another challenge is related to the tuning of the parameters of
AOS.Most credit assignment and selection methods introduce new
parameters that need to be tuned before applying AOS.Tuning the
values of these parameters can signi“‘cantly affect the performance
of AOS; thus they need to be carefully tuned. For example, in the
QLCAmethod, there are two new parameters, the learning rate ( )
and the discount factor ( ). The former controls the ratio of ac-
cepting the newly learned information while the latter controls
the impact of the future reward. Higher levels of tend to the
replacement of the old information by new information. On the
other hand, lower values of emphasize on the existing informa-
tion. Furthermore, as increases, more emphasis is given to future
reward compared to the immediate reward.

This challenge becomes more critical when tuning a set of pa-
rameters responsible for making a balance between the exploration
and exploitation abilities of MHs since they directly control the
behavior of MHs and in"uence the performance of AOS.One way
to overcome this challenge is to use the parameter setting meth-
ods explained in Section 8, wherein the parameters of the MHs
are tuned oine or controlled in an online manner. In almost all
papers so far, these parameters are considered “xed during the
search process, while they can be dynamically adjusted based on
the characteristics of the search space. Accordingly, employing an
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online parameter control method (see Section 8) within AOS can
be a promising future research direction.

Another challenge in AOSis related to the number of operators
involved in AOS. Increasing the number of operators may reduce
the performance of AOS. As the number of operators increases,
more effort is required to perform AOS,and consequently a higher
level of overhead is imposed on AOS.In addition, the performance
of AOS may degrade if some operators do not perform well, and
they will be selected fewer and fewer in the long term. The pres-
ence of such operators increases the computational overhead with
no signi“‘cant gain. One way to overcome this challenge is to use
Adaptive Operator Management (AOM) that aims to manage oper-
ators during the search process by excluding inecient operators
and including other operators in AOS (Maturana et al., 2011). The
use of AOM in AOS could be further investigated as a future re-
search direction.

Another promising research direction could be employing AOS
in multi-objective COPswhere several objectives are evaluated si-
multaneously. An issue in this regard is how to assign a reward
to an operator that improves one objective function but degrades
the other objectives. In addition, integrating multiple rewards into
a single credit value to be assigned to each operator is another
issue to be addressed. One way to cope with these issues could
be incorporating the crowding distance as well as the rank of the
non-dominated fronts to calculate the reward/credit.

7.2. Learnable evolution model

Darwinian-type EAs (e.g., GA) are inspired from the principles
of Darwines theory of evolution. They apply usual genetic opera-
tors like mutation, crossover, and selection to generate new popu-
lations. These semi-random operators, which govern the evolution
process, do not consider the experiences of individual solutions,
the experience of an entire population, or a collection of popu-
lations. Therefore, new solutions are generated through a parallel
trial-and-error  process, so the lessons learned from the past gen-
erations are not used in these types of MHs. To overcome some
of these ine ciencies, a new class of EAs has been proposed as
Learnable Evolution Models (LEMs) (Michalski, 2000). In opposition
to Darwinian-type EAs that contain a Darwinian evolution mode,
LEM contains a learning mode wherein ML techniques are em-
ployed to generate new populations. In the learning mode, a learn-
ing system seeks reasons (rules) by particular ML techniques (e.g.,
AQ18 & AQ21 rule learning, C4.5 decision tree, etc.) on why certain
solutions in a population (or a collection of past populations) are
superior to others in performing a designated class of tasks.

Speci“cally, the learning mode of LEM consists of two processes
(Michalski, 2000; Wojtusiak, Warden, & Herzog, 2011):

€ Hypothesis generation ... ltdetermines a set of hypotheses that
characterizes the differences between high-“tness and low-
“tness solutions in recent or previous populations.

€ Hypothesis instantiation ... Itgenerates new solutions on the
basis of the learned hypotheses obtained in the hypothesis gen-
eration process. The learning mode thus produces new solu-
tions not through semi-random Darwinian-type operations, but
through a deliberate reasoning process involving the generation
and instantiation of hypotheses about populations of solutions.
The new populations are normally generated by injecting the
extracted rules (i.e., rule injection) into the new solutions.

For the hypothesis generation process, two groups (sets) of in-
dividuals are selected from the population at each iteration: the
high performance group, brie’y H-group, and the low performance
group, brie"y L-group, based on the values of the “tness function.
The collection of H-group and L-group solutions can be a subset
of the population, or they can encompass the whole population
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Table 8

Classi“cation of papers studying LEM.
Ref. Hypothesis gen. Hypothesis inst. Group frmt. uni/duoLEM MH CorP
Kaufman and Michalski (2000); AQ18 Sequence injection FBF duoLEM EA HEDP
Domanski et al. (2004)
Jourdan et al. (2005) C4.5 Rule injection FBF uniLEM EA WDSDP
Woijtusiak et al. (2011) AQ21 Rule injection FBF duoLEM GA VRP
Wojtusiak et al. (2012) AQ21 Rule injection FBF duoLEM MA VRP
Wu and Tseng (2017) Edge-intersection Rule injection PBF duoLEM GA TSP
Jung et al. (2018) C4.5 Rule injection FBF duoLEM HS WDSDP
Moradi (2019) AQ18 Sequence injection FBF uniLEM EA VRP

(Michalski, 2000). The H-group and L-group can be formed using
two methods (Michalski, 2000):

€ Fitness-based formation (FBF) - In this method, the population
is partitioned according to two “tness thresholds, high “tness
threshold and low “tness threshold. These thresholds are pre-
sented as a percentage and determine the high and low por-
tions of the total “tness value range in the population. These
portions are then used to form the H-group and L-group of so-
lutions. Indeed, the solutions whose “tness value is not worse
than the high “tness threshold% of the best “tness value in the
population form H-group, and those whose “tness value is bet-
ter than the low “tness threshold% of the worst “tness value
in the population form L-group. When using “tness-based for-
mation method, the size of the H-group and L-group will vary
from population to population since it depends on the range of
solutionse “tness values at each iteration.

Population-based formation (PBF) - In this method, the H-
group and L-group are formed according to two thresholds ex-
pressed as the percentage of the number of solutions in the
population. These thresholds are called high population thresh-
old and low population threshold. The high population thresh-
old% of the best solutions form H-group and the low population
threshold% of the worst solutions form L-group.

dan

The above two methods can be applied to the entire population
as a global approach or they can be applied to different subsets
of the population as a local approach. The idea behind a local ap-
proach is that different solutions of the population may carry dif-
ferent information, and there would be no global information that
can characterize the whole population.

Once H-group and L-group are formed, a ML technique is em-
ployed to generate qualitative descriptions that discriminate be-
tween these two groups (Michalski, 2000). The description of an
H-group represents a hypothesis that the landscape covered by H-
group contains the solutions with higher “tness values compared
to the landscape of L-group. Therefore, the H-groupes qualitative
description can be interpreted as the search direction toward the
promising areas. LEMs account for such qualitative descriptions
to guide the evolution process, rather than relying on semi-blind
Darwinian-type evolutionary operators. Such an intelligent evolu-
tion in LEMs leads to the detection of the right directions for evo-
lution; hence, making large improvements in the individualse “t-
ness values.

Two versions of LEM are introduced in the literature (Michalski,
2000): the uniLEM and duoLEM. In uniLEM version, the evolution
process is solely conducted through the learning mode, while in
duoLEM version both Darwinian and learning evolution processes
are coupled.

7.2.1. Literature classi“cation & analysis

This section classi“es and analyzes the relevant papers wherein
LEM has been used to solve COPs.Table 8 classi‘es the relevant
studies based on different characteristics related to the design and
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implementation of LEM including hypothesis generation, hypothe-
sis instantiation , group formation, uniLEM/duoLEM evolution version,
the MH algorithm and the COPunder study.

A set of insights can be extracted from Table 8. In terms of hy-
pothesis generation, the learning mode of LEM can potentially em-
ploy different learning techniques that can generate descriptions
discriminating between classes of individuals in a population (i.e.,
H-group versus L-group). If individuals are described by a vector
of values (e.g., a permutation of a number of cities in TSPor a
number of jobs in FSP),the rule learning techniques such as AQ
learners (Domanski, Yashar, Kaufman, & Michalski, 2004; Kaufman
& Michalski, 2000; Moradi, 2019; Wojtusiak et al., 2011; 2012), de-
cision tree learners such as C4.5 (Jourdan, Corne, Savic, & Walters,
2005; Jung, Kang, & Kim, 2018), or ANN can be utilized. It can be
stated from Table 8 that AQ learners, in which the learning sys-
tems employ some form of AQ algorithms, are particularly suitable
for implementing LEM.

Regarding the hypothesis instantiation , it can be seen that the
majority of the studies have used a rule injection mechanism,
wherein H-group and L-group of individuals are investigated and
their strengths and weaknesses are described in terms of rules.
Taking TSP as an example, a partial sequence of cities that fre-
quently appears in H-group individuals could be a rule, and such
rules can be used to evolve the population by injecting frequent
sequences to create new solutions. However, due to the complexity
of the COPat hand in terms of prior knowledge on the structure
of the solutions and descriptive characteristics of H-group and L-
group of individuals, the learning program uses an abstract, rather
than precise, speci“cation of different individuals (Jourdan et al.,
2005; Jung et al., 2018). Consequently, the learned rules are also
referred to as an abstraction of individuals. The system is then
able to instantiate these abstract rules in many ways to generate
new solutions in further populations. The rule instantiation pro-
cess must, however, follow the constraints of the COPat hand.

7.2.2. Discussion & future research directions

This section identi“es the challenges of implementing LEM for
solving optimization problems, particularly COPs.Throughout the
discussion, future research directions are also elaborated.

Considering the group formation in Table 8, there is a require-
ment for implementing LEM as well as an important challenge
when employing “tness-based formation to create H-group and L-
group. Indeed, the fundamental assumption underlying LEM is that
there is a method for evaluating the performance of individuals in
evolving populations. Consequently the ability to determine the “t-
ness value of an individual, or an approximation of this value, is
a precondition for the LEM application. Therefore, LEM cannot be
implemented for COPsfor which de“ning or even approximating
the “tness function is not possible.

A challenge related to the “tness-based formation that may
happen in particular COPsis that in some evolutionary processes,
the “tness function may not be constant throughout the entire
process and change over time. It happens for particular COPs
wherein the parameters change in a piece-wise manner depend-
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ing on the level of the decision variables. A change in the “tness
function may be gradual (i.e., “tness function drift) or abrupt (i.e.,
“tness function shift) (Michalski, 2000). Indeed, if the “tness func-
tion is changing during the evolution process, some high-“thess
individuals (i.e., H-group) in a previous population may become
low-“tness individuals (L-group) in a future population and vice
versa.

One way to overcome this challenge is keeping a record of the
L-groups determined in past populations and not only the cur-
rent population. Therefore, a set of past L-groups plus L-group in
the current population become the actual L-group supplied to the
learning mode. The number of past L-groups to be taken into con-
sideration is controlled by a parameter. It is worth mentioning that
there is no signi“‘cant need to store past H-groups because the cur-
rent H-group inherently contains the best individuals until now.
Generally, the formation of H-group and L-group from the current
population in the evolution process ignores the history of evolu-
tion (Michalski, 2000).

An issue that may happen when using population-based for-
mation is the possibility of an intersection between H-group and
L-group. This issue should be resolved before hypothesis genera-
tion. Simple methods can be used for handling this issue such as
ignoring inconsistent solutions, including inconsistent solutions in
H-group or L-group, or employing statistical methods to solve the
inconsistencies (Michalski, 2000).

Regarding the way of coupling LEM and Darwinian evolution
modes, there are research papers (Domanski et al.,, 2004; Wu &
Tseng, 2017) that place the learning mode before Darwinian Evo-
lution mode. On the other hand, LEM can start with Darwinian
Evolution mode (Wojtusiak, Warden, & Herzog, 2012), and then
the two modes can alternate until the LEM termination criterion
is met.

It has been regularly mentioned that involving discriminant de-
scriptions provided by ML techniques in EAs signi“‘cantly acceler-
ates the search process toward promising solutions. Such acceler-
ations have been shown as frequent quantum leaps of the “tness
function that signify the discovery of the correct direction of the
evolution process. However, such an evolutionary acceleration im-
poses a higher computational complexity on the search process.
This extra complexity mostly depends on the ML technique used.
Therefore, employing e cient ML techniques and a parallel imple-
mentation of the AQ algorithm can reduce the complexity. Among
them, the latter can reduce the complexity from linear to logarith-
mic.

Although the initial results from employing LEM to solve COPs
are promising, there are still plenty of unsolved questions that re-
quire further research. The “rst attempt for future research direc-
tion should be doing numerous systematic theoretical and experi-
mental implementations of LEM to better understand the trade-off
between LEM and Darwinian evolution modes.

Among COPs,LEM has been mostly implemented on routing
(e.g., TSP,VRP) and design (e.g., HEDP, WDSDP) problems. There-
fore, the second important future research direction for the inter-
ested researchers is implementing LEM on other COPsto “gure out
the strengths, weaknesses, and limitations of both LEM and Dar-
winian evolution modes and to identify the most appropriate areas
for their application.

7.3. Neighbor generation

After selecting the most appropriate operator in Section 7.1, it is
the time to generate the neighbors from the current solution(s) us-
ing the selected operator(s). One naive way to generate neighbors
is to generate all possible neighbors and select the ones with the
best OFV. Another way is to generate neighbors randomly. How-
ever, considering the computational time and the goal to lead the
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search process towards promising areas of the search space, both
strategies might not be very ecient. To be as ecient as possi-
ble, ML techniques can be used to leverage the generation of good
neighbors by extracting knowledge from the generated good solu-
tions so far.

Indeed, using ML techniques, we can extract the common char-
acteristics that are often present in good solutions during or before
the search, and use this knowledge to generate new solutions with
the same characteristics by “xing or prohibiting speci“c solution
characteristics. In this way, we can lead the search towards promis-
ing areas of the search space and accelerate the process of “nding
a good solution. Usually, this knowledge is in the form of a set
of rules or patterns that are discovered in good solutions (Arnold,
Santana, Sorensen, & Vidal, 2021). This process is composed of two
phases: knowledge extraction and knowledge injection (Arnold et al.,
2021). In knowledge extraction, the common characteristics found
in good solutions are extracted. Then, in knowledge injection, the
extracted knowledge is used to generate the neighbors. When the
knowledge appears as a set of patterns, the most frequent patterns
of good solutions are injected into the new solutions to generate
the neighbors.

The knowledge extraction phase can occur either oine or on-
line. In oine extraction, knowledge is extracted from a set of
training instances with the aim to generate good solutions for new
instances. However, in online extraction, knowledge is extracted
from good solutions obtained during the search process, while
solving the problem instance. The most common ML techniques in
neighbor generation are Apriori algorithms for ARs,RL,and DT.

7.3.1 Literature classi“cation & analysis

Table 9 classi“es the papers using ML techniques for neigh-
bor generation based on different characteristics such as learning
mechanism, the ML technique used to extract knowledge, the MH
algorithm that conducts the search process, the operator to gen-
erate new neighborhood, the COPunder study, and the size of the
training set for studies that have used oine knowledge extraction.

As can be seenin Table 9, almost all reviewed papers have used
the online manner to extract knowledge in the form of patterns.
Indeed, when dealing with a new instance with unknown charac-
teristics, the most ecient way to extract patterns is online. An
advantage of online pattern extraction is avoiding the misleading
patterns extracted in an oine manner that may not correctly rep-
resent the properties of the good solutions of the new problem
instance; however, the computational overhead of online pattern
extraction should not be ignored.

7.3.2. Discussion & future research directions

In this section, the requirements and challenges of applying ML
techniques for neighbor generation are discussed. Then, some di-
rections for future research are presented.

One of the most important requirements of using ARs is data
availability . In fact, when extracting patterns, it is indispensable to
have a sucient pool of good solutions, since the accuracy of the
extracted patterns directly depends on the availability of su cient
data. The higher the availability of data, the higher the precision
and usefulness of the extracted patterns.

The “rst challenge of neighbor generation is to determine the
stage of the search process at which the knowledge should be
extracted to generate new neighbors. This challenge is twofold;
“rst, in the beginning of the search process, the improvements
are larger, and the set of good solutions frequently change, and no
precise pattern can be extracted from the pool of good solutions.
Therefore, the knowledge should be extracted after some iterations
are passed. Second, if the knowledge is injected into the neighbor
generation process in the earlier stages of the search process, it
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Table 9
Classi“cation of papers studying neighbor generation.
Ref. Learning ML tech. MH Operator COP Size
Santos, Ochi, Marinho, and Drummond (2006) Online Apriori GA XRO VRP
Barbalho, Rosseti, Martins, and Plastino (2013); Ribeiro, Plastino, and Martins (2006) Online Apriori GRASP RRO SPP
Zhou et al. (2016) Online RL LS RRO GCP
Arnold et al. (2021) Online Apriori GA,GLS LSO VRP
Thevenin and Zufferey (2019) Online Apriori VNS LSO SMSP
Sadeg et al. (2019) Online Apriori ABC LSO MAX-SAT
Arnold and Sérensen (2019) Oine DT, SVM, RF  GLS LSO VRP 192,000
Fairee, Khompatraporn, Prom-on, and Sirinaovakul (2019) Online RL ABC LSO TSP
Wang, Pan, Li, and Yin (2020a) Online RL LS RRO WIDP
Zhou, Hao, and Duval (2020) Online Apriori EAs MPO QAP
Al-Duoli, Rabadi, Seck,and Handley (2018) Online Apriori GRASP LSO VRP

prevents the MH to explore different areas of the search space, and
it may cause a premature convergence to a local optimum.

The second challenge is related to the frequency at which
the extracted pattern should be updated and injected to create
new neighbors. Indeed, one may identify the patterns once and
use them for neighbor generation throughout the search process
or update the patterns frequently based on the characteristics of
the newest good solutions. Pattern extraction may be a time-
consuming process which increases the computational cost of the
search process. Therefore, there is a trade-off between the accuracy
of patterns based on the latest information from the search process
and the computational overhead of pattern extraction process.

Another challenge arises when several pieces of patterns are
available in good solutions and there might be plenty of possibil-
ities to inject them into new solutions (i.e., separate or combined
injection of patterns). There is no guarantee that the combination
of pieces of patterns also provides good solutions (Arnold et al.,
2021). In other words, although several single patterns may appear
in a large number of good solutions, their combination does not
necessarily generate better or even good solutions. For instance,
in permutation-based representations, edges AS B and CS D may
separately appear in good solutions, however; there is no guaran-
tee that edges AS B and CS D simultaneously lead to a good solu-
tion.

Along with all the previously mentioned challenges, last but not
least is making decision about the ratio by which new solutions
are generated using the extracted knowledge. The level of such ra-
tio affects the behavior of the MH in terms of its exploration and
exploitation abilities. If almost all solutions are generated based
on the previous knowledge, the MH tends to mostly exploit the
currently observed area. On the other hand, if a small ratio of so-
lutions are generated based on the previous knowledge, the algo-
rithm has an opportunity to explore new areas of the search space.
Therefore, the user has to consider the exploration and exploita-
tion abilities of the algorithm while deciding about the ratio of the
solutions to generate based on the extracted knowledge.

Considering Table 9, most of the studies that used ARs attempt
to identify the characteristics of the good solutions. One research
direction could be using ARsto identify the characteristics of bad
solutions which have to be removed from the new solutions. Then,
this knowledge could be used merely to avoid bad solutions, or it
could be used besides the knowledge obtained from good solutions
to complement the patterns of good solutions.

In addition, most of the papers in the literature have used the
knowledge of good solutions to exploit the most promising areas
of the search space, while the exploration aspect of the search pro-
cessshould be also taken into consideration. One way of doing that
is extracting the rare patterns from the visited solutions and in-
jecting them into new solutions to generate solutions far from the
solutions visited so far.
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8. Parameter setting

The success of any MH signi“‘cantly depends on the values of
its parameters (Talbi, 2009). As the parameters control the behav-
ior of the algorithm during the search process, the values of pa-
rameters should be properly set to obtain the highest performance.
Although there are several suggestions on the values of parame-
ters for a similar group of problem instances in the literature, they
are not necessarily the most appropriate settings when solving the
problem instances at hand (Wolpert & Macready, 1997). Indeed,
parameter setting is not a onetime task, and researchers need to
set the algorithmes parameters whenever they solve new problem
instances (Huang, Li, & Yao, 2019). Parameter setting, also known
as algorithm con“guration (Hoos, 2011), is divided into two cate-
gories, parameter tuning and parameter control (Eiben, Hinterding,
& Michalewicz, 1999).

€ Parameter tuning ... Alsoknown as oine parameter setting,
identi“es appropriate parameter levels before employing the al-
gorithm to solve the problem instances at hand. In this case,
the levels of parameters remain unchanged during the exe-
cution of the algorithm. Parameter tuning can be done using
different methods such as brute force experiments (Phan, Ellis,
Barca, & Dorin, 2019), Design of Experiments (DOE) (Talbi, 2009),
racing procedures (Huang et al., 2019), and meta-optimization
(Talbi, 2009).

€ Parameter control ... Alsoknown as online parameter setting,
focuses on adjusting the levels of parameters of an algorithm
during its execution, rather than using initially “ne-tuned pa-
rameters that remain unchanged during the whole execution.
Parameter control methods have been developed based on the
observation that tuning the parameters does not necessarily
guarantee the optimal performance of a MH, since different
settings of a parameter may be appropriate at different stages
of the search process (Aleti, 2012). The reason is attributed to
the non-stationary search space of optimization problems that
results in a dynamic behavior of MHs, which should evolve
regularly from a global search mode, requiring parameter val-
ues suited for the exploration of the search space, to a local
search mode, requiring parameter values suitable for exploit-
ing the neighborhood. Parameter control can be performed in
three manners (Karafotias, Hoogendoorn, & Eiben, 2014); deter-
ministic manner in which the levels of parameters are adjusted
using given schedules (e.g., pre-de“ned iterations) without no
feedback from the search process, adaptive manner in which
the levels of parameters are adjusted using a feedback from
the search process, where a credit is assigned to the parame-
ters levels based on their performance, and self-adaptive man-
ner in which the parameters levels are encoded into solution
chromosomes and evolved during the search process.
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Table 10

Classi“cation of papers studying parameter setting.
Ref. Tuning/ control ML tech. Credit ast. Selection MH Parameter CoP Size
Hong, Wang, Lin, and Lee (2002) Control RL SCA MCS GA Crossover & mutation rates KP
Ramos et al. (2005) Tuning LogR . EA Population size TSP 25
Maturana and Riff (2007) Control RL SCA MCS GA Crossover & mutation rates JSP
Caserta and Rico (2009) Tuning LR GH Population size CLSP 4992
Zennaki and Ech-Cherif (2010) Tuning SVM TS Intensi‘cation rate TSP,VRP 25000
Lessmann et al. (2011) Tuning SVM, LR ... PSOLearning rates WDSDP 5284
Liao and Ting (2012) Control RL SCA MCS EA  Mutation rate PDP
Aleti, Moser, Meedeniya, and Grunske (2014) Control LR EA Crossover & mutation rates QAP
André and Parpinelli (2014) Control RL SCA PMS DE Perturbation & Mutation rates KP
Segredo et al. (2016) Control RL SCA MCS,PMS MA Mutation rate AP
Benlic et al. (2017) Control RL QLCA SMS BLS Number & probability of perturbation VSP
Chen, Yang, Li, and Wang (2020) Control RL QLCA EGS GA  Crossover & mutation rates FSP
Oztop, Tasgetiren, Kandiller, and Pan (2020) Control RL QLCA EGS VNS Acceptance & QL parameters FSP

ML techniques can be employed in both parameter tuning and
parameter control. In parameter tuning, ML techniques such as
LogR (Ramos, Goldbarg, Goldbarg, & Neto, 2005), LR (Caserta &
Rico, 2009), SVM (Lessmann, Caserta, & Arango, 2011), and ANN
(Dobslaw, 2010) are used to predict the performance of a given
set of parameters based on a set of training instances. In param-
eter control, ML techniques can be involved in adaptive parame-
ter control to help control the parameters levels by using feedback
information on the performance of the parameters levels during
the search process. The integration of ML techniques into adaptive
parameter control is similar to that of AOS (Section 7.1), where
a feedback is used to adapt the parameters levels to the search
space. It similarly involves four main steps (except Move Accep-
tance step): 1) performance criteria identi“‘cation, 2) reward com-
putation, 3) credit assignment, and 4) selection which have been
explained in detail in Section 7.1.

8.1. Literature classi“cation & analysis

This section aims at classifying, reviewing, and analyzing the
studies on the use of ML techniques in the parameter setting of
MHs. In this regard, Table 10 classi‘es the papers based on dif-
ferent characteristics including parameter tuning/control, the em-
ployed ML technique, credit assignment and selection methods, the
MH for which the parameters are set, the parameters to set, the
COPunder study, and “nally the size of the training set for the pa-
pers that have studied parameter tuning.

As can be seen from Table 10, parameter control has attracted
much more attention compared to parameter tuning when solving
COPs.Indeed, the main reason is that “xed values of the param-
eters do not necessarily guarantee the best performance of a MH
during the whole search process. The underlying cause is the non-
stationarity of the search space as explained at the beginning of
this section. From a general point of view, the performance of a
MH signi“‘cantly depends on its capability to explore and exploit
the promising areas of the search space, and the exploration and
exploitation abilities of a MH depend on the levels of its param-
eters. Taking the GA as an example, the crossover and mutation
rates should change depending on the performance of the algo-
rithm and the properties of the search space. For example, once a
promising solution is explored, that solution should be exploited
carefully. Therefore, the mutation and crossover rates should be
decreased and increased, respectively. On the other hand, when the
algorithm gets stuck in local optima, the mutation rate can be in-
creased to help the solution to escape from the local optima.

Based on Table 10, ML techniqgues based on RL have been
mostly employed when controling the parameters during the
search process. The underlying reason is that a RL agent iteratively
learns from interactions with its environment to take the actions
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that would maximize the reward. In the context of parameter set-
ting, a list of different con“gurations can be de“ned as a set of ac-
tions and each time a con“guration set provides better solutions, a
reward is assigned to that set of con“gurations. Indeed, at the be-
ginning of the search process, all possible con“guration sets have
the same probability to be selected. During the search process,
these probabilities can change according to their successin creat-
ing better solutions (André & Parpinelli, 2014). It has been reported
in the literature that in the earlier stages of the search process,
the selection probability of each con“guration set changes more
often compared to the latter stages of the search process. It has
been explained by the diversity loss that occurs during the search
process (André & Parpinelli, 2014; Benlic et al., 2017; Liao & Ting,
2012; Segredo, Paechter, Hart, & Gonzalez-Vila, 2016). In addition,
there is evidence that the levels of exploration representative pa-
rameters (e.g., mutation rate in GA and DE, size of Tabu list in TS)
change more frequently at the earlier stages of the search process
when the MH is exploring the search space. On the other hand,
the exploitation representative parameters get more attention in
the latter stages of the search process when the MH needs to ex-
ploit promising solutions found so far (André & Parpinelli, 2014;
Benlic et al., 2017; Liao & Ting, 2012; Zennaki & Ech-Cherif, 2010).

Another insight from Table 10 is that most of the papers have
done parameter setting for population-based MHs. Population-
based MHs possess both exploration and exploitation representa-
tive parameters, and a balance between these abilities should be
well established. If not, the search process either gets stuck in lo-
cal optima or performs a random search.

8.2. Discussion & future research directions

The “rst challenge when performing parameter setting is to de-
cide whether to tune or control the parameters. Each mode of set-
ting has its own advantages/disadvantages. There are experimental
evidence revealing that the optimal parameter settings are differ-
ent not only for different problem instances, but also for differ-
ent stages of the search process of the same problem instance. In
this situation, it is recommended to perform parameter control de-
spite the computational overhead imposed on the search process.
A big challenge related to the parameter control is the trade-off be-
tween exploration and exploitation to select the current best con-
“guration(s) or search for new good ones. Once the con“guration
is changed during the search process, the new con“guration should
work for a certain number of iterations so that its performance can
be evaluated. An extra parameter should be then de“ned to control
when the con“guration should be changed (i.e., the rate of con“g-
uration change). The rate of con“guration change itself is another
parameter that needs to be tuned or controlled during the search
process. Therefore, the parameter control itself introduces a set of
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other parameters (i.e., parameters of the parameter control mech-
anism) that need to be tuned or controlled, which results in the
increase of the complexity of the parameter control.

Parameter control faces another challenge when dealing with
continuous parameters, where an in“nite number of values exist
for each parameter. One way to deal with this challenge is con-
sidering the parameter setting as a separate optimization problem
and the parameter levels as decision variables to be optimized. The
other way is developing a self-adaptive parameter control mecha-
nism. Another way studied in the literature is subdividing the lev-
els of parameters into feasible intervals (Aleti, 2012). In this way,
the interval borders are normally “xed and not manipulated by the
search process. As a result, the number and the size of the inter-
vals have to be determined by the user a priori that may jeopar-
dize the accuracy of the interval as well as the eciency of MHs.
If the levels of a parameter are divided into several narrow inter-
vals, the accuracy of the intervals would be higher, while the com-
putational effort of selecting among the intervals signi“cantly in-
creases. Accordingly, there is a risk to “nd good intervals late, or
there might be some intervals that are not selected at all. If the
intervals are wide, different parameter values belonging to a single
interval may lead to different performance of the MH, as wide in-
tervals may encompass smaller intervals that behave differently. As
a result, no unique performance behavior can be attributed to such
wide intervals. To cope with this issue, the adaptive range parame-
ter control method (Aleti, Moser, & Mostaghim, 2012) adapts inter-
vals during the search process, and entropy-based adaptive range
parameter control method (Aleti & Moser, 2013) clusters parame-
ter values based on their performance. However, more research is
indeed required to understand the impact of small changes in the
values of continuous parameters on the performance of MHs.

Considering Table 10, one future research direction is applying
parameter setting methods to other MHs such as single-solution
based MHs. A “rst try can be developing a parameter setting
mechanism to control the parameters of SA such as the cooling
temperature, which is always a challenging problem for practition-
ers. Additionally, further investigation could be done on controlling
parameters that have received little attention so far.

Another research direction that should be put in priority is im-
plementing parameter setting on multi-objective  COPsusing ML
techniques. It should be noted that one of the challenges of adap-
tive parameter control in multi-objective optimization problems is
how to de“ne the feedback as a single value such that it would
be representative of the quality of a parameter value over multiple
objective functions.

9. Cooperation

Different MHs with particular strengths and weaknesses work-
ing on the same problem instance produce different results. In this
situation, using a framework enabling the use of different MHs in
a cooperative way could result in an improved search process. The
main motivation of developing cooperative MHs is to take advan-
tage of the strengths of different MHs in one framework, to bal-
ance exploration and exploitation, and to direct the search towards
promising regions of the search space (Martin, Ouelhadj, Beullens,
& Ozcan, 2011). The interest in using such frameworks for solv-
ing COPshas risen due to their successful results (Martin et al.,
2016; Talbi, 2002). The cooperation framework can be modeled as
a multi-agent system in which the search process is performed by
a set of agents that exchange information about states, models, en-
tire sub-problems, solutions, or other search space characteristics
(Blum & Roli, 2003).

In multi-agent based cooperative MHs, each agent could be a
MH or a MHes component such as an operator, a search strategy,
a solution, etc. that tries to solve the problem, while communicat-
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Fig. 5. Cooperation procedure.

ing with other agents (Silva, de Souza, Souza, & de Franca Filho,
2018). The cooperation could happen either at the algorithm level
(between several MHs), wherein different MHs with speci‘c char-
acteristics cooperate to solve a COP,or it can happen at the op-
erator level (inside a MH), wherein different operators cooperate
when discovering different regions of the search space. The former
belongs to the category of high-level integration of ML techniques
into MHs while the latter falls in the low-level category of integra-
tion.

ML techniques can help in designing intelligent cooperation
frameworks by extracting the knowledge from the resolution of
the problem instances by different agents (MHs). This knowledge
is then incorporated into the framework that enables the frame-
work to continuously adapt itself to the search space. In this way,
ML techniques can improve the overall performance of the coop-
eration framework. The integration of ML techniques into a coop-
eration framework can happen in two learning levels: inter-agent
and intra-agent levels. The former is to adapt the behavior of the
overall framework to the search space, while the latter is to adapt
the behavior of each agent to the search space.

Fig. 5 illustrates the process of cooperation between agents.
Agents can cooperate sequentially or in parallel (Talbi, 2002). The
cooperation between the agents can be synchronous, where the
agents work in a parallel way and none of them waits for the re-
sults from other agents, or asynchronous, otherwise (Martin et al.,
2016). As can be seen in Fig. 5, the exchange of information be-
tween the agents is direct (many-to-many), where each agent is
allowed to communicate with any other agent and indirect, where
agents are only allowed to use the information provided in a com-
mon pool (Martin et al., 2016). While cooperating, the agents can
share partial or complete solutions to proceed the search process.

9.1 Literature classi“cation & analysis

Table 11 classi“es the papers studying cooperation for COPs
based on different characteristics such as cooperation level, paral-
lel/sequential mode of cooperation, learning level, the employed ML
technique, direct/indirect information sharing, solution sharing type
between the agents, the MH algorithms participated in the cooper-
ation, and “nally the COPunder study. To the best of our knowl-
edge, Table 11 reviews the most relevant papers, including the
most recent papers in the literature that study the cooperation be-
tween MHs (or MHse components) to solve COPswith the help of
ML techniques.
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Classi“cation of papers studying cooperation.
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Ref. Coop. level Parl./ Seq. Learning ML tech. (In)Direct Sharing MH COP

Le Bouthillier, Crainic, and Kropf (2005) Alg. Parl. Inter Apriori Ind. Part. TS VRP
Meignan, Créput, and Koukam (2008, 2009); Alg. Parl. Intra RL Di. Comp. EA VRP,FLP
Meignan, Koukam, and Créput (2010)

Cadenas, Garrido, and Mufioz (2009) Alg. Parl. Inter DT Ind. Comp. GA, SA TS KP
Barbucha (2010a) Opr. Parl. Inter RL Ind. Comp. LS VRP

Silva, de Souza, Souza, and de Oliveira (2015) Alg. Parl. Intra LA Ind. Comp. ILS VRP

Lot* and Acan (2016) Alg. Parl. Inter LA Ind. Comp. GA,DE,SA,ACO,GD,TS MSP
Martin et al. (2016) Alg. Parl. Inter Apriori Di. Part. MHs FSP,VRP
Sghir, Hao, Jaafar,and Ghédira (2015); Sghir, Opr. Seq. Inter RL Ind. Comp. GA,LS QAP, KP, GCP,WDP
Jaafar, and Ghédira (2018)

Wang and Tang (2017) Alg. Seg. Inter k-means Di. Comp. MA, LS FSP

Silva, de Souza, Souza, and Bazzan (2019) Alg. Parl. Intra QL Ind. Comp. ILS VRP,PMSP
Karimi-Mamaghan et al. (2020a) Alg. Seq. Inter k-means Di. Comp. DE,ILS IPP
Karimi-Mamaghan et al. (2020b) Alg. Seq. Inter k-means Di. Comp. GA,ILS HLP

As can be seen in Table 11, the majority of the studies applied
cooperation in a parallel manner. The main motivation has been
an attempt to reduce the computational time of executing sev-
eral MHs one after another (i.e., sequential cooperation). In Par-
allelism, the MHs are executed simultaneously, and consequently,
it results in the reduction of the search process time. Indeed, the
combination of cooperation and parallelism allows self-su cient
algorithms to run simultaneously while exchanging information
about the search (Silva et al., 2018). This combination has attracted
increasing attention in optimization, especially for solving COPs,
since they have shown good results on different COPs (Karimi-
Mamaghan, Mohammadi, Jula, Pirayesh, & Ahmadi, 2020a; Martin
et al., 2016). Moreover, as mentioned by Talbi (2002) and Cotta,
Talbi, and Alba (2005), the best results obtained for many opti-
mization problems are achieved by the cooperative algorithms. In
addition, there is greater accessto parallel computing resources,
which provides new possibilities for developing these techniques
(Silva et al., 2018).

Regarding synchronous or asynchronous cooperation, the major-
ity of the studies focus on the asynchronous way of cooperation.
Indeed, in most of the times when MHs have been executed
in parallel, their cooperation has been asynchronous, wherein
none of MHs wait for the results of the others. Asynchronous
cooperation carries fewer operational challenges and gives the
opportunity to modify the cooperation framework easily. Using
asynchronous cooperation, MHs can be added or dropped easily
without any change to the overall framework. On the other hand,
a synchronous cooperation faces more challenges. In synchronous
cooperation, the agents must coordinate their actions in time. In
other words, the agents are activated only when all agents are
ready to act (Barbucha, 2010b). Indeed, although the agents work
independently, the activation times of the agents depend on each
other. Accordingly, there is a need to determine a synchronization
point at which the agents announce their readiness and start to
act. Hence, the time dependency of the agents may cause some
agents to wait and consequently some processors stay idle for a
period of time.

According to Table 11, the agents of a cooperative system could
be MHs or MHse components. The cooperation could happen ei-
ther at an algorithm level or operator level. The difference between
the cooperation at the operator level and AOS (Section 7.1) relies
on the fact that in AOS, operators are selected one after another
based on their history of performance, while in the cooperation
framework, the operators share information while searching for so-
lutions cooperatively.

The main ML techniques used in cooperative MHs are RL and
Apriori algorithms for ARs. RL has been used to help the system
adapt its behavior based on the experience it gains throughout the
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search process. RL is used in two levels, within the agents (intra-
agent level) to adapt their behavior to the characteristics of the
search space during the search process by modifying their compo-
nents (selecting the operators) and/or in a higher level (inter-agent
level) to adapt the application of the agents based on their perfor-
mance compared to other agents. On the other hand, ARs are used
to identify the common characteristics of good solutions. Then, this
knowledge is shared among the agents in the form of partial solu-
tions, which allows each agent to generate new solutions based on
the identi“ed patterns and guide the search toward promising re-
gions.

9.2. Discussion & future research directions

This section aims at introducing the requirements and potential
challenges when designing a cooperation framework of MHs. Next,
a set of future research directions are provided.

The design and implementation of e cient
require sucient apriori knowledge about
take advantage of the strengths of different algorithms, which
is the main motivation of developing cooperative algorithms,
one needs to be aware of a broad spectrum of algorithms and
have knowledge on their strengths and weaknesses. For instance,
population-based MHs are powerful in exploration. On the other
hand, single-solution based MHs are strong in exploitation. As can
be seen in Table 11, studies with heterogeneous algorithms have
incorporated both population-based and single-solution based
MHs into their cooperation framework to take advantage of both
exploration and exploitation abilities. As discussed earlier, the
information between the agents can be shared in the form of
partial solutions, where ARs can be used to generate these partial
solutions. In this regard, a set of challenges in front of ARsfor par-
tial solution generation, which were elaborated in Section 7.3, also
needs to be addressed in the design of cooperation frameworks.

Considering Table 11, in most of the studies, the agents (MHSs)
attempt to save and share good obtained solutions partially or
completely. In this way, each MH would be aware of the promis-
ing regions exploited by other MHs. As a future research direction,
sharing the bad solutions and their corresponding characteristics
could be also useful to prevent MHs to explore non-promising re-
gions. Indeed, the non-promising regions already visited by a MH
could be prohibited to be explored and exploited again by other
MHs.

Most of the reviewed papers in this section have used cooper-
ative MHs to solve single-objective COPs,and there are only few
papers that study cooperation in multi-objective COPs (Karimi-
Mamaghan et al., 2020a; Karimi-Mamaghan, Mohammadi, Pi-
rayesh, Karimi-Mamaghan, & Irani, 2020b). These two papers have

cooperative MHs
different MHs. To
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used k-means to link multi-objective  population-based MHs with
single-solution based MHs. Once the non-dominated solutions are
obtained via the population-based MHs, k-means is used to cluster
these solutions. Then, the representative of each cluster is given to
the single-solution based MH to be more exploited. This cooper-
ation has led to better non-dominated solutions in terms of both
the quality and the computational time of the search process. In
this regard, another future research direction could be extending
the concept of cooperation to multi-objective COPs.

10. Conclusion and perspectives

In recent years, ML techniques have been extensively integrated
into MHs for solving COPs,and promising results have been ob-
tained in terms of solution quality, convergence rate, and robust-
ness. This paper provides a comprehensive and technical review
on the integration of ML techniques in the design of different ele-
ments of MHs for different purposes including algorithm selection,
“thess evaluation, initialization, evolution, parameter setting, and
cooperation. Throughout the manuscript, particular challenges are
elaborated for each way of integrating. Regardless of the way of in-
tegration, there are also a set of common challenges in the use of
ML techniques in MHs as follows:

... Whenevera ML technique is integrated into a MH, a set of ad-
ditional parameters are introduced that need to be carefully
tuned/controlled to obtain the highest performance. In almost
all papers so far, these parameters are considered “xed dur-
ing the search process. To cope with this challenge, we propose
to dynamically adjust the additional parameters based on the
characteristics of the integration.

. Scalingto larger problem instances is a challenge when training
ML techniques on problem instances up to a particular size. To
overcome this issue, one may attempt to use larger instances
for training, while this could be very time-consuming and be-
come a computational issue, except for very simple ML tech-
niques and optimization problems.

. Thehigher the volume of data, the higher the performance of
ML techniques. Data availability is another challenge when in-
tegrating ML techniques into MHSs. Indeed, collecting or even
generating enough data is a hard task. If even enough histori-
cal data is available, the way of sampling from historical data
to appropriately mimic the behavior re”ected in such data is
another challenge (Bengio et al., 2021). One way of tackling the
data availability challenge could be using Few-Shot Learning to
train a model with a very small amount of training data (Wang,
Yao, Kwok, & Ni, 2020b). By using prior knowledge of similar
problem instances, few-shot learning can be rapidly generalized
to new tasks containing only a few problem instances with su-
pervised information.

. With the rapid development of new technologies, real-world
problems are becoming increasingly complex, and with the new
advances in digitalization, various real-time data are collected
massively that cannot be processed by classical ML techniques.
Such big data carries several issues that need to be taken into
consideration (Emrouznejad, 2016). To cope with such big data,
more advanced ML techniques such as deep learning can be in-
tegrated into MHs.
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Apart from the above-mentioned ways to cope with common
challenges that can be considered as promising future works, a
set of common future research directions for the integration of ML
techniques into MHs are elaborated as follows:

... Almost all the studies reviewed in this paper only deal with
the integration of ML techniques into MHs with a single pur-
pose, while the higher performance of MHs is expected to be
achieved when ML techniques serve MHs for multiple pur-
poses. Therefore, an interesting future research direction could
be integrating ML techniques into MHs simultaneously for dif-
ferent purposes. For instance, implementing parameter control
and adaptive operator selection simultaneously in a MH may
increase the overall performance of the MH throughout the
search process.

. With the development of supercomputers, it could be an inter-
esting future research direction to explore the parallelism con-
cept in the integration of ML techniques into MHs using GPU
(Graphics Processing Units) and TPUs (Tensor Processing Units)
accelerators (Alba, 2005; Cahon, Melab, & Talbi, 2004; Van Lu-
ong, Melab, & Talbi, 2011).

. Themajority of papers in the literature use conventional ML
techniques such as k-NN, k-means, SVMs, LR, etc. With the re-
cent rapid development of ML techniques, more advanced and
modern ML techniques such as deep reinforcement learning or
transfer learning can be employed as a promising research di-
rection. In this regard, when various ML techniques are avail-
able to be integrated into MHs for a particular purpose, the al-
gorithm selection problem can be studied to select the most
appropriate ML technique.

. Animportant issue in real-world optimization problems is
the uncertainty of input data and particularly where the in-
put data statistically contains various distributions. In this re-
gard, a promising research direction could be using ML tech-
nigues such as clustering methods (e.g., k-means, SOM) to clus-
ter the input data with the aim of discriminating the data
with different distributions. These classes of data can be then
used/integrated to solve the optimization problem at hand.

. Thedynamicity of the input data is another issue that can be
handled by ML techniques when solving dynamic optimiza-
tion problems. Indeed, ML techniques can be used to moni-
tor/predict the evolution of the input data, and once a new evo-
lution is detected by ML techniques, the optimization variables
are updated correspondingly.

. Lastbut not least, another future research direction is us-
ing the integration of ML techniques into MHs for either new
COPsor other complex optimization problems such as multi-
objective optimization, bi-level optimization, etc. This direction
also opens other research questions that are worthy for further
investigations.

Appendix A. List of COPs

In this section, a complete list of COPsthat have been used
throughout this paper is provided.
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Routing Problem

Table Al
Exhaustive list and the abbreviation (Abv.) of the COPsstudied by the articles reviewed in this paper.

COP Abv. Description

Assignment Problem AP Assigning a set of locations to a set of facilities such that the total assignment cost is minimized (Degroote et al., 2018).

Arc Routing Problem ARP Finding a set of tours with minimum cost in an undirected graph to serve the positive demand of edges by a set of available
vehicles where each tour begins and ends at the depot (Consoli & Yao, 2014).

Assemble-To-Order Problem ATOP Determining an order based on which the parts and sub-assemblies are made but the “nal assembly is delayed until the
customer orders are received such that the total production cost is minimized (Horng et al., 2013).

Berth Allocation Problem BAP Allocating the berthing position and berthing time to the incoming vessels to perform loading/unloading activities such that
the total vesselsswaiting time or the early or delayed departures is minimized (Wawrzyniak et al., 2020).

Bin-Packing Problem BPP Placing N items in a number of capacitated knapsacks so that the total number of knapsacks used to pack all items is
minimized (Burke et al., 2011).

Capacitated Lot Sizing CLSP Planning the lot size of a set of different items over a planning horizon under production capacity constraints such that the

Problem total production, setup, and inventory cost is minimized (Caserta & Rico, 2009).

Facility Location Problem FLP Locating a number of facilities in a set of potential locations to serve a set of customers with prede“ned locations such that
the total opening and transportation cost is minimized (Meignan et al., 2010).

Flowshop Scheduling FSP Finding the order of processing N jobs on M machines with the same sequence such that the makespan, total tardiness, or

Problem total lag between the jobs is minimized (Pavelski et al., 2018b).

Graph Coloring Problem GCP Finding the minimum number of colors for coloring the vertices of a graph such that no two adjacent vertices have the same
color or “nding the maximum sub-graph of a graph to be colored with k colors such that no two adjacent vertices have the
same color (Mostafaie, Khiyabani, & Navimipour, 2020; Zhou et al., 2016).

Heat Exchanger Design HEDP Designing the structure of tubes under technical and environmental constraints including the size of the exchanger and air

Problem temperature such that the heat transfer rate is maximized (Domanski et al., 2004).

Hub Location Problem HLP Locating a set of hubs and allocating a set of origin and destination nodes to the located hubs for transferring the
origin-destination "ows through the hubs such that the total hub opening and transportation costs is minimized (Mohammadi
et al., 2019).

Inspection Planning Problem IPP Determining which quality characteristics of a product should be inspected at which stage of the production process such that
the total inspection cost is minimized (Karimi-Mamaghan et al., 2020a).

Job-Shop Scheduling JSP scheduling the processing of N jobs consists of a sequence of tasks that need to be performed in a given order on speci‘c
subsets of M machines such that the makespan or total tardiness is minimized (Nasiri et al., 2019).

Knapsack problem KP Placing a number of items with speci‘c values and dimension in M capacitated knapsacks such that the total value of the
knapsacks is maximized (Cadenaset al., 2009).

Location-Routing Problem LRP Locating a number of facilities in a set of potential locations, assigning customers with prede‘ned demand to the located
facilities, and “nding the routes from located facilities to customers such that the total cost of opening facilities, cost of
vehicles and transportation cost is minimized (Zhalechian et al., 2016).

Maximum Satis“ability MAX-SAT Finding an assignment of the truth values to the variables of a Boolean formula such that the number of satis‘ed clauses is

Problem maximized (Miranda et al., 2018).

Mixed-model Assembly Line MASP Determining the optimal production planning of multiple products along a single assembly line while maintaining the least

Sequencing Problem possible inventories (Mosadegh et al., 2020).

Multiprocessor Scheduling MSP Given a directed graph representing a parallel program, where the vertices represent the tasks and the edges represent the

Problem communication cost and task dependencies, scheduling the tasks on a network of processors under task precedence
constraints such that the makespan is minimized (Lot‘ & Acan, 2016).

Nurse Rostering Problem NRP Assigning nurses to working shifts under a set of constraints including nurse preferences, time restrictions, labor legislation,
and hospital standards such that the total cost of the hospital is minimized or the nursese preferences are maximized
(Gretsista & Burke, 2017).

Orienteering Problem OoP Selecting a set of nodes from available nodes with speci‘c score and determining the shortest path between the selected
nodes such that the total score of the visited nodes is maximized (Gunawan et al., 2018).

Pickup and Delivery Problem PDP Designing a set of routes to collect commodities from speci‘c origins and deliver them to their speci“c destinations using
capacitated vehicles such that the total cost is minimized (Liao & Ting, 2012).

Parallel Machine Scheduling PMSP Scheduling the processing of N jobs on M identical parallel machines such that the total makespan is minimized (Silva et al.,

Problem 2019).

Project Scheduling Problem PSP Assigning limited resources (employees) to activities with prede“ned duration and resource requirements under activity
precedence relations such that the lateness or the total tardiness is minimized (Pathak et al., 2008).

Personnel Scheduling PSSP Assigning personnel to working shifts under a set of constraints (e.g., shift time) such that the total cost is minimized (Burke

Problem et al., 2011).

Quadratic Assignment QAP A special case of Assignment Problem with quadratic objective function (Pitzer et al., 2013).

Problem

Boolean Satis“ability Problem SAT Determining if the variables of a Boolean formula can be substituted by True and Falsevalues such that the Boolean formula
turns out to be TRUE(Satis“able) or not (Maturana & Saubion, 2008).

Single-Machine Scheduling SMSP A special case of Flow-Shop scheduling problem where there is only a single machine (Thevenin & Zufferey, 2019).

Problem

Set Packing Problem SPP Determining/picking a subset of elements from a bigger set such that the total value of picking is maximized (Ribeiro et al.,
2006).

Job Sequencing and Tool SSP Sequencing N jobs, each of which requires a prede‘ned set of tools, on a single "exible machine and assigning tools to a

Switching Problem capacitated machine such that the number of tool switches is minimized (Ahmadi et al., 2018).

Transmission Expansion TEPP Planning new transmission facilities as an expansion to the existing transmission network to satisfy demand without load

Planning Problem interruption under technical constraints such that the total investment and operational cost is minimized (da Silva et al., 2016).

Traveling Salesman Problem TSP Finding a tour in a complete weighted graph that goes through all vertices only once and returns to the starting vertex such
that the tour cost is minimized (Kanda et al., 2016).

Timetabling Problem TTP Allocating prede“ned resources (teachers and rooms) to events (classes) such that there is no con’ict between any two events
and a set of objectives are satis“ed (de la Rosa-Rivera et al., 2021).

Vehicle Routing Problem VRP Finding a set of undirected edges in a graph by which the demand of customers located in the vertices is satis“ed by a set of
vehicles that visit each customer exactly once. Vehicles start and end their route at the depot such that the total
transportation cost is minimized (Gutierrez-Rodriguez et al., 2019).

Vertex Separator Problem VSP Partitioning the graph into three non-empty subsets A, B, and C such that there is no edge between A and B, and |C] is
minimized subject to a bound on max{|A|, |B[} (Benlic et al., 2017).

Winner Determination WDP Considering a set of bids in a combinatorial auction, assigning items to bidders such that the auctioneerss revenue is

Problem maximized (Sghir et al., 2018).

Water Distribution System WDSDP Determining the location, size, and capacity of water system components including pipes and pumps such that the systemes

Design Problem reliability (ability to supply adequate water with acceptable pressure and quality to customers) is maximized (Lessmann et al.,
2011).

Weighted Independent WIDP Determining a pairwise non-adjacent subset D of V of a graph G= (V, E) such that every vertex not in D is adjacent to at least

Domination Problem one vertex in D (Wang et al., 2020a).

Workforce Scheduling and WSRP Assigning workforce to the activities needed to be performed at different locations where the workforce need to travel

between locations to perform the activities such that the employees travel time or hiring cost is minimized (Lopez-Santana
et al., 2018).
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