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Abstract 

This paper develops a new mathematical model to study a location-routing problem with simultaneous 
pickup and delivery under the risk of disruption. A remarkable number of previous studies have assumed that 
network components (e.g., routes, production factories, depots, etc.) are always available and can permanently 
serve the customers. This assumption is no longer valid when the network faces disruptions such as flood, 
earthquake, tsunami, terrorist attacks and workers strike. In case of any disruption in the network, tremendous 
cost is imposed on the stockholders. Incorporating disruption in the design phase of the network will alleviate the 
impact of these disasters and let the network resist disruption. 

In this study, a mixed integer programming (MIP) model is proposed that formulates a reliable capacitated 
location-routing problem with simultaneous pickup and delivery (RCLRP-SPD) services in supply chain distribution 
network. The objective function attempts to minimize the sum of location cost of depots, routing cost of vehicles 
and cost of unfulfilled demand of customers. Since the model is NP-Hard, three meta-heuristics are tailored for 
large-sized instances and the results show the outperformance of hybrid algorithms comparing to classic genetic 
algorithm. Finally, the obtained results are discussed and the paper is concluded. 
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1. Introduction 
Supply chain management (SCM) consists of efficiently planning, implementing and controlling the supply 

chain operations. Activities in SCM include transferring and storing raw materials, work-in-process inventory and 
final products from origin to customers [1]. Accordingly, design of a distribution network is a fundamental step in 
building an efficient supply chain. In designing a distribution network, decisions vary from the number of echelons 
in the network to the optimal location(s) of the facilities. These decisions are often classified into strategic, tactical, 
and operational decisions. A strategic decision, which is a long-term one, is not made on a regular basis and 
requires major investment in capital. Decisions such as the location and construction decisions fall into this 
category. A tactical or mid-term decision is made more frequently than a strategic decision. For example, decisions 
in a vehicle routing problem (VRP) are tactical decisions [2]. Finally, those decisions that take place regularly are 
the operational or short-term decisions such as scheduling.  

The location-routing problem (LRP) integrates the strategic location and tactical routing decisions [3]. The 
LRP is often defined as a special case of VRP, in which the optimal number and location of depots along with 
distribution routes must be determined simultaneously [4], [5]. Indeed, the LRP aims to locate the depots and 
route the vehicles to meet the demand of customers with a typical objective of minimizing the total cost of 
transportation (routing costs), fixed costs of locating depots and fixed costs of vehicles. A capacitated version of 
the LRP (CLRP) is provided by imposing capacity constraints on both depots and vehicles [6], [7].  

Location and routing decisions are traditionally made in succession, where routing decisions follows 
location decisions. First, the location of the depots is determined a priori and then, the vehicles are routed through 
the customers and from the located depots. However, in real-world application, these decisions should be made 
simultaneously since ignoring routes when locating depots increases the cost of distribution and leads to sub-
optimal solutions [8]. 

In most LRPs, one typical assumption is that depots are always available and can serve customers under 
any circumstances. However, this assumption is not valid in real settings when the depots are exposed to 
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uncertainty risk [3]. The uncertainty in SCM can be generally categorized into operational uncertainty (risk) and 
disruption. Operational risks do not affect the functionality of supply chain’s elements and only affect operational 
factors that are supposed to be fundamentally uncertain. They are typically inherent uncertainties in input 
parameters of a problem such as customer demand, purchasing prices for raw materials or required resources, 
production costs, transportation costs, lead times or transportation times. However, disruption risks can either 
completely or partly interrupt the functionality of supply chains’ elements, typically for an uncertain amount of 
time [9]. Such disruptions are caused by nature or disasters such as earthquakes, hurricanes, terrorist attacks, 
economic and financial crises, labor strikes, or machine breakdowns [2], [3]. Disruptions are mostly discrete and 
significant, whereas the uncertainties from operational sources are usually continuous and minor [10]. The 
occurrence of such major disruptions in the depots of a supply chain network results in an excessive transportation 
cost since the customers previously served by these failed depots have to be served by more distant depots [11]. 
Therefore, it is necessary to design a distribution system as reliable as possible to reduce the adverse effects of 
such disruptions and their resulting cost. In the context of supply chain design, according to [12], “a reliable system 
is one that can perform well even when parts of the system have failed”. This ability is often called “reliability” 
[13].  

Accordingly, this paper aims at developing a RCLRP-SPD, wherein the impact of disruption of depots is 
investigated in both the location of depots and the routing of the vehicles through the customers. Indeed, when 
disruption happens in the depots, the location of depots may change and this change would probably change the 
routing of the vehicles through the customers. Furthermore, the problem is modeled on simultaneous pickup and 
delivery, whereby the depot delivers the demand of the customers as well as picking up the products from the 
customers, such as unused or damaged products which need to be recovered or destroyed. The RCLRP-SPD 
assumes that customer demands are deterministic and when a depot is disrupted, it becomes totally unavailable 
to serve customers. When disruption occurs in a depot, the demand of its allocated customers is either serviced 
by other depots or lost. The goal is to determine the depot locations, outbound delivery routing and backup 
emergency depots under disruptions, in order to minimize the expected total cost (i.e., the sum of fixed location 
costs, variable routing costs and demand loss penalties). 

The RCLRP-SPD is NP-hard as it includes two NP-hard problems which are well-known as: the capacitated 
multi-depot location problem, the capacitated vehicle routing problem (CVRP) [7]. Therefore, in order to solve 
medium and large-size numerical instances effectively, it is necessary to develop meta-heuristic solution 
approaches. Different types of solution algorithms have been proposed for solving the CLRP in the literature, 
varying from local searches such as Variable Neighborhood Search (VNS) and Granular Tabu Search (GTS) [14] to 
global search algorithms such as genetic algorithms [15]. This paper proposes a hybrid solution algorithm that 
combines both local and global search mechanisms for having more efficient exploitation and exploration 
simultaneously.  

The rest of the paper is organized as follows. Section 2 reviews the relevant papers in the literature. The 
problem is stated and formulated in Section 3. Next, Section 4 proposes a classic genetic and two hybrid solution 
approaches to solve the proposed MILP model. Afterward, the results are provided in Section 5. Finally, the paper 
is concluded in Section 6. 
 
2. Literature review 

This section reviews the latest and most relevant RCLRP and RCLRP-SPD papers. The literature review is 
presented in three sections: Section 2.1 reviews the location-routing problems, Section 2.2 reviews the reliable 
location-routing problems and finally, Section 2.3 reviews the solution approaches, particularly the heuristic and 
meta-heuristic algorithms employed in LRPs.  
 
2.1. Location-routing problem (LRP) 

Location-routing problems (LRPs) have been extensively studied by several authors in the literature and 
the interested readers are referred to the studies dealing with LRPs and their proposed classifications by [16] and 
[17].  

Karaoglan et al. [18] studied LRP with simultaneous pickup and delivery, wherein the authors developed 
two mixed integer formulations (i.e., a node-based and a flow-based formulation) incorporating a family of valid 
inequalities to strengthen the model. In order to solve the mathematical model, the authors developed a heuristic 
algorithm based on simulated annealing (SA) algorithm. Through the computational results, they showed that the 
flow-based formulation outperforms the node-based formulation in terms of the solution quality and running time 
for small-size instances (10-30 customers), while the node-based formulation performs better than the flow-based 
formulation for medium-size instances (50-100 customers). Zarandi et al. [19] examined the LRP with time 
windows under operational uncertainty, where customers demand and travel times are assumed to be fuzzy 



variables. The authors designed a fuzzy chance-constrained programming model using credibility theory, and a 
simulation-embedded SA algorithm was then presented to solve the problem. For initializing the solutions of the 
proposed SA algorithm, they used a heuristic method based on fuzzy c-means clustering with Mahalanobis 
distance and sweeping method.  

Huang [20] presented a three-stage solution approach to deal with the multi-compartment capacitated LRP 
with pickup-delivery and stochastic demands. This three-stage solution approach solves the model to determine 
the depot locations, assign customers to the located depots and route the vehicles through customers 
subsequently. The objective is to minimize depot opening cost, vehicle cost, and travel costs and violation of the 
vehicle and depot capacity constraints. Pichka et al. [21] addressed the two-echelon open LRP (2E-OLRP). This 
problem is a new variant of the classical LRP that considers location and routing decisions in two-echelon supply 
chains in which third-party logistics providers are used. In this research, three new mathematical models and a 
hybrid SA algorithm are developed to solve the 2E-OLRP. 

Zhang et al. [22] studied the multi-depot emergency facilities LRP with uncertain demand. To incorporate 
the uncertain characteristics of the emergency response system, they have developed an uncertain multi-
objective programming model. Due to the computational complexity of the model, a hybrid intelligent algorithm 
is designed to solve the proposed model by combining uncertain simulation and a genetic algorithm. Moshref-
Javadi and Lee [23] introduced the latency LRP (LLRP) aiming at the customers’ waiting time minimization by 
optimally locating depots and routing of vehicles. To solve the model, the authors presented a memetic algorithm 
and a recursive granular algorithm.  

Khalili-Damghani et al. [24] studied a bi-objective LRP to distribute perishable products in a supply chain. 
Considering the perishability of products, minimizing transportation costs is not the main objective in perishable 
supply chain planning. Therefore, the objectives are to minimize the total cost of the system and to balance the 
transportation cost of perishable products at distribution centers while the due-date of perishable products should 
be met. Timely delivery is an essential factor in the distribution process of perishable products. So, the authors 
considered a set of constraints to deliver the products no later than a predetermined time. Since the proposed 
model is NP-hard as well as bi-objective, they developed two solution procedures, i.e. an exact method called 
epsilon-constraint and an evolutionary computation, called non-dominated sorting genetic algorithm (NSGA-II) to 
find out the near Pareto optimal solutions. Ghaffari-Nasab et al. [25] addressed a bi-objective CLRP with 
probabilistic travel times, where the aim is to minimize the total cost and the maximum delivery time to the 
customers. The authors presented mathematical programming formulations to model the problem using two 
stochastic programming approaches. The deterministic equivalents of the two stochastic models are extracted 
and solved by a variable neighborhood descent (VND).  

 
2.2. Reliable location-routing problem (RLRP) 

In deterministic LRP we make decisions about depots locations, customer allocation and vehicle routing to 
balance the trade-off between fixed set-up costs and variable transportation costs. However, considering 
disruption caused by natural disasters, terrorist attacks, or labor strikes, some of the located depots may become 
unavailable to serve customers. When disruption occurs in a depot, its customers may have to be re-allocated 
from their original depot to other depots with higher transportation costs [26]. Ahmadi-Javid and Seddighi [10] 
studied the LRP in a supply chain network composed of a set of producer-distributors that produced and 
distributed a single commodity to a number of customers. In this work, the production capacity of each producer 
(distributor) varies randomly because of numerous sources of disruptions. In addition, the vehicles utilized the 
distribution system are also disrupted randomly. 

Xie et al. [27] studied the RLRP wherein all located depots are independently disrupted with a same 
probability. One of the assumptions made in this study is that customers receive delivery service in fixed groups. 
In other words, a vehicle is assigned to visit the customers in each group. Under this assumption, if one depot fails, 
then all of its customers will be reassigned to another backup depot within the same group, which is rather 
restrictive. Moreover, the vehicle delivery distance is approximated by the sum of the local travel distances within 
the group and the line-haul distance between this group and the affected depot. Zhang et al. [11] examined an 
LRP that includes a set of warehouses which are randomly disrupted. A scenario dependent MILP model is 
proposed to optimize the location of depots, delivery routing towards faraway areas and alternative planning. The 
authors proposed a meta-heuristic algorithm exploiting maximum-likelihood sampling, route-reallocation 
improvement, two-stage neighborhood search and SA algorithm. 

Mohammadi et al. [28] developed a MINLP location-allocation model in a supply chain management 
problem to design reliable logistics networks that perform as well as possible under normal condition, and also 
perform relatively well when disruptions occur. They proposed a single objective scenario based robust 
optimization problem to minimize the nominal cost. In addition, to solve the proposed model, a new self-adaptive 



meta-heuristic algorithm based on genetic and imperialist competitive algorithms is developed. Li et al. [29] 
proposed two related models for the design of distribution networks exposed to the risk of disruption (i.e., reliable 
p-median problem and reliable uncapacitated fixed-charge location problem). Both models accounted for 
heterogeneous facility failure probabilities and one layer of supplier backup. Both models are formulated as 
nonlinear integer programming models which are proven to be NP-hard. To solve the proposed model, the authors 
developed an algorithm based on Lagrangian relaxation. Wang et al. [30] examined a facility location problem 
under random facility disruption and presented a MINLP model for designing a reliable supply chain network that 
is exposed to the risk of disruption. They solved the proposed model using a Lagrangian relaxation-based 
algorithm. 

 
2.3. Heuristic/meta-heuristic approaches 

Among different evolutionary algorithms, genetic algorithms (GAs) are probably the most widely used class 
of evolutionary algorithms and have been applied as well to the VRPs and LRPs. A comprehensive survey of 
different types of GAs for these problems can be found in [31]. 

To solve CLRP, Derbel et al. [32] developed a GA-based hybrid algorithm and an iterated local search (ILS). 
Since GA could fail to converge to the global optimum and ILS could fall to the local optimum too quickly, they 
embedded ILS into GA to refine the search through successive iterations and maximize the chance of convergence 
to the optimal solution. Karaoglan and Altiparmak [33] proposed a memetic algorithm for solving a CLRP with 
Mixed Backhauls. They conducted an experimental study and compared the results with the branch-and-cut 
algorithm's lower bounds. Results showed that the memetic algorithm was able to find optimal or very good 
quality solutions within a reasonable computation time. 

Escobar et al. [7] presented a two-phase hybrid heuristic (2-Phase HGTS), wherein the first phase constructs 
a solution (i.e., Construction phase), and the second phase (i.e., Improvement phase) employs a modified Granular 
Tabu Search (GTS) approach with different diversification strategies to modify the constructed solution. 
Furthermore, a random perturbation procedure is considered to prevent the algorithm from remaining in a local 
optimum for a given number of iterations. Ardjmand et al. [34] developed a new model for the location-routing 
problem. They proposed a new GA that solves the model within a reasonable computational time. Yu and Lin [6] 
proposed an SA heuristic with a special solution encoding scheme for solving the LRP with simultaneous pickup 
and delivery (LRPSPD). The solution encoding scheme can broaden the search space and facilitate the search for 
a better solution. The results showed the efficiency of the proposed SA to solve LRPSPD and its superiority over 
the existing exact approaches in terms of the quality of the solution. Yu et al. [35] presented an SA algorithm in 
which each solution is represented as a giant tour. Move, swap and 2-opt were used as neighborhoods and they 
operated on the giant tour. Therefore, a neighborhood move may change the position of the customer, open or 
close depots or reassign customers to the locations. Ferreira and de Queiroz [36] hybridized two heuristic 
algorithms based on the SA algorithm combined with a diversification procedure to solve a CLRP. 
 
2.4. This paper’s contributions 

Table 1 summarizes the reviewed articles with their characteristics in two main aspects as problem 
characteristics and solution approach. In Table 1, SPD, LSbMH and PbMH stand for Simultaneous Pickup and 
Delivery, Local Search based Meta-Heuristics (i.e., single solution based meta-heuristics) and Population based 
Meta-Heuristics, respectively. This Table 1 helps to well position our work comparing to the literature.  
 

Table 1. Position of this paper comparing to the literature 

Reference Problem Characteristics Solution Approach 

Location Routing Depot 
Capacity 

SPD Disruption LSbMH PbMH Hybrid 

(Yu et al. 2010)         
(Karaoglan et al. 2012)         
(Derbel et al. 2012)         
(Escobar, Linfati, and Toth 2013)         
(Ahmadi-Javid and Seddighi 2013)         
(Zarandi et al. 2013)         
(Ghaffari-Nasab et al. 2013)         
(Escobar et al. 2014)         
(Nadizadeh and Nasab 2014)         
(Zhang et al. 2015)         
(Huang 2015)         



(Khalili-Damghani, Abtahi, and 
Ghasemi 2015) 

        

(Karaoglan and Altiparmak 2015)         
(Marinakis 2015)         
(Yu and Lin 2016)         
(Lopes, Ferreira, and Santos 2016)         
(Moshref-Javadi and Lee 2016)         
(Xie, Ouyang, and Wong 2016)         
(Mohammadi et al. 2016)         
(Majidi et al. 2017)         
(Dehghani, Pishvaee, and Jabalameli 
2018) 

        

(Pichka et al. 2018)         
(B. Zhang et al. 2018)         
(Ferreira and de Queiroz 2018)         
(X. Yu, Zhou, and Liu 2019)         
(Pekel and Soner Kara 2019)         
(Oudouar, Lazaar, and Miloud 2020)         
This Study         

 
Based on Table 1, the main contributions of this paper that distinguish it from the existing studies in the 

literature are: 

• Studying a reliable capacitated location-routing problem with simultaneous pickup and delivery (RCLRP-
SPD) wherein depots are stochastically disrupted and become unavailable to serve the customer demands, 

• Proposing a new mixed-integer linear programming (MILP) model for the proposed RCLRP-SPD, 

• Developing an efficient scenario-based approach to cope with the stochastic disruption of depots, and 

• Proposing three tailored meta-heuristic algorithms (i.e., two hybrid algorithms and a classical genetic 
algorithm) for solving the proposed MILP. 

 
3. Problem statement and formulation 

This section proposes a MILP model to formulate a RCLRP-SPD. Section 3.1 states the problem with its 
underlying assumptions. Afterward, Section 3.2 proposes the MILP model for the problem. 

 
3.1. Problem statement 

The goal of the proposed RCLRP-SPD is to choose and locate a set of depots (facilities) and to build vehicles’ 
routes to meet customers delivery and pickup demands, such that the total expected cost of location, routing and 
disruption is minimized. In this problem, each potential depot could be stochastically disrupted, and each 
customer has certain demand. In Figures 1 and 2, two solutions of the CLRP and RCLRP are illustrated. 
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Figure 1. The scheme of a CLRP 

 
In Figure 1, three depots (i.e., depots number 1, 4 and 5) are located (opened) and the customers are 

allocated to the located depots and served in a particular order. Furthermore, if each of the depots fails, its 



allocated customers will not be served anymore and this would impose high costs on the system. On the other 
hand, Figure 2 illustrates the reliable version of the CLRP, wherein the located depot number 4 is disrupted and 
some of its customers are served by depot number 1 but with a higher transportation cost and finally some of 
them are served via the emergency depot.  
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Figure 2. The scheme of a RCLRP 

 
The main assumptions of the proposed RCLRP-SPD are as follows: 

• Only one depot and one vehicle can be allocated to each customer, 

• Route of each vehicle starts and ends at the same depot, 

• A single product is delivered and picked up in this problem, 

• All vehicles have a same capacity (homogeneous fleet), but depots have different capacities, 

• Customers have known pickup and delivery demands and predefined locations, 

• Potential depots have known capacities and locations, 

• There is a fixed cost for vehicles and depots, 

• Several vehicles can be assigned to each located depot, 

• Disruptions are assumed to be independent and depots can simultaneously be disrupted, 

• Simultaneous pickup and delivery are assumed for each customer, 

• Disruption probability of each depot is known, and 

• The penalty cost of the unmet demand is known. 
 

In real-world situations, it is not possible to predict accurately the exact value of future parameters. 
Therefore, considering uncertainty makes the decision makers more capable to have better planning for the 
future. 

The first step in dealing with uncertainty in modeling and optimizing supply chain related problems is to 
determine how to display uncertainty. Three well-known and widely-used methods for this purpose are [37]: 
I. Distribution-based approach, wherein the normal distribution is typically used with a specific mean and 

standard deviation to model uncertain parameters [38]–[40]. 
II. Fuzzy-based approach, wherein the parameters are treated as fuzzy numbers with membership functions 

[41]–[45]. 
III. Scenario-based approach, wherein some discrete scenarios with relevant levels of probability are used to 

describe the expected occurrence of specific results [11], [28]. 
 
In this paper, disruption of depots is modeled by a set of discrete scenarios. Each scenario specifies a subset 

of depots that become non-operational or disrupted with a specific probability of occurrence. In case of a 
disruption, the affected customers whose allocated depots are disrupted, may be served by other located depots 
or emergency depots. Obviously, allowing more surviving (backup) depots to cover customers that were once 
serviced by a disrupted depot will increase the flexibility of the distribution system. Accordingly, Section 3.2 
formulates a scenario based RCLRP-SPD. 
 
3.2. Problem formulation 



This section presents a scenario-based mathematical formulation for the studied problem. This formulation 
is based on the model proposed by [11] for the RLRP but extends it to account for the multiple vehicles. Unlike 
[11] which has only considered delivery decisions, the presented formulation tackles with both pickup and delivery 
decisions. Our model aims to minimize the total expected costs of all scenarios including fixed costs, expected 
travel costs and expected penalty costs. Let G=(V,A) be an undirected network, where V is the set of nodes, 
composed of a subset  of geographically dispersed customers denoted by I and a subset of potential depots 
denoted by J. A={(i, j)|i, j ϵ V, i≠j} is the set of arcs that connect each pair of nodes in V. Let S be the set of scenarios, 
each specifying a set of disrupted depots. Before proposing the MILP model, necessary notations are explained as 
follows.  

 
Sets 
𝐼 Set of customers 
𝐽 Set of potential depots 
𝑆 Set of scenarios 
𝐻 Set of vehicles 
𝑒 Emergency depot 

 
Parameters 
𝑓𝑑𝑗  Fixed cost of depot j 

𝑐𝑑𝑗  Capacity of depot j 

𝑞𝑗  Failure probability of depot j 

𝑑𝑖  Delivery goods demand of customer i 
𝑝𝑖  Pickup goods demand of customer i 
𝜃𝑖  Penalty of serving customer i using the emergency depot 
𝑐𝑣 Capacity of vehicles 
𝑓𝑣 Fixed cost of each vehicle 
𝑡𝑐𝑖𝑗  Traveling cost from node i to node j 

𝑎𝑗𝑠  
If depot j in scenario s is not disrupted 1, otherwise 0. Disrupted depots are known a priori; 
therefore, ajs is a binary parameter. 

𝑝𝑟𝑠  Probability that scenario s occurs 
𝑀 A big number 

 
Decision variables 
𝑌𝑗  If depot j is open 1, otherwise 0 

𝑍𝑖𝑗𝑠  If customer i is served by depot j in scenario s 1, otherwise 0 

𝑋𝑖𝑘ℎ𝑗𝑠  If node k is visited immediately after node i on a route originating from depot j by vehicle h in 
scenario s 1, otherwise 0 

𝑇𝑖𝑗𝑠  Delivery goods transported between node i and node j in scenario s 

𝑊𝑖𝑗𝑠  Pickup goods transported between node i and node j in scenario s 

𝑈𝑖ℎ𝑗  An auxiliary integer variable to eliminate the subtours  

 
Emergency depot e, has no fixed cost, a failure probability of 0 and infinite capacity. If a customer i is not 

served in a scenario, we assign it to the emergency depot e, which induces an unmet demand penalty i. 
In certain scenarios, if a depot survives, then it is “normal” (non-disrupted); if it is both normal and open, 

we call it “available”. Considering this point, customers can only obtain service from available depots in each 
scenario. Consider Jns = {j|j ϵ J, ajs = 1} as the set of normal depots in scenario s. In the strategic decision, assume 
that the set of depots selected to be opened is denoted by Jo. Then, the set of available depots in scenario s is Jas 
= Jns ∩ Jo. Since each scenario specifies a subset of depots which become non-operational or disrupted (ajs, ∀jϵJ, 
∀sϵS), the probability that scenario s occurs is represented using Equation (1). 

 

𝑝𝑟𝑠 = ∏ 𝑞𝑗

𝑗∈𝐽:𝑎𝑗𝑠=0

 . ∏ (1 − 𝑞𝑗)

𝑗∈𝐽:𝑎𝑗𝑠=1

 (1) 

 
A total of 2|J| possible scenarios exist, which leads to an exponential growth in problem size and huge 

computational burden to solve the problem. By increasing the number of depots by one, we double the number 
of scenarios.  



Based on the provided notations, the proposed MILP model for the RCLRP-SPD is as follow: 

 

min  𝑂𝐹𝑉 = ∑ 𝑓𝑑𝑗𝑌𝑗

𝑗∈𝐽

+ ∑ 𝑝𝑟𝑠 ( ∑ ∑ ∑ ∑ 𝑡𝑐𝑖𝑘𝑋𝑖𝑘ℎ𝑗𝑠 + ∑ 𝑍𝑖𝑒𝑠𝜃𝑖 + ∑ ∑ ∑ 𝑋𝑗𝑖ℎ𝑗𝑠𝑓𝑣

ℎ∈𝐻𝑖∈𝐼𝑗∈𝐽𝑛𝑠𝑖∈𝐼𝑗∈𝐽𝑛𝑠ℎ∈𝐻𝑘∈𝐼∪𝐽𝑛𝑠𝑖∈𝐼∪𝐽𝑛𝑠

)

𝑠∈𝑆

 

(2) 

 

subject to:  
𝑍𝑖𝑗𝑠 ≤ 𝑌𝑗                                                ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽𝑛𝑠, 𝑠 ∈ 𝑆 (3) 

∑ 𝑍𝑖𝑗𝑠 = 1

𝑗∈𝐽𝑛𝑠∪𝑒

 ∀𝑖 ∈ 𝐼, 𝑠 ∈ 𝑆 (4) 

∑ 𝑑𝑖𝑍𝑖𝑗𝑠 ≤ 𝑐𝑑𝑗𝑌𝑗

𝑖∈𝐼

 ∀𝑗 ∈ 𝐽𝑛𝑠, 𝑠 ∈ 𝑆 (5) 

∑ 𝑝𝑖𝑍𝑖𝑗𝑠 ≤ 𝑐𝑑𝑗𝑌𝑗

𝑖∈𝐼

 ∀𝑗 ∈ 𝐽𝑛𝑠, 𝑠 ∈ 𝑆 (6) 

∑ ∑ 𝑋𝑘𝑖ℎ𝑗𝑠 = 𝑍𝑖𝑗𝑠

ℎ∈𝐻𝑘∈𝐼∪{𝑗}

𝑘≠𝑖

 
∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽𝑛𝑠, 𝑠 ∈ 𝑆 (7) 

∑ ∑ ∑ 𝑋𝑘𝑖ℎ𝑗𝑠   ≤ 1

𝑗∈𝐽𝑛𝑠ℎ∈𝐻𝑘∈𝐼∪𝐽𝑛𝑠
𝑖≠𝑘

 
∀𝑖 ∈ 𝐼, 𝑠 ∈ 𝑆 (8) 

∑ ∑ ∑ 𝑋𝑘𝑖ℎ𝑗𝑠 = ∑ ∑ ∑ 𝑋𝑖𝑘ℎ𝑗𝑠

𝑗∈𝐽𝑛𝑠ℎ∈𝐻𝑘∈𝐼∪𝐽𝑛𝑠
𝑘≠𝑖

𝑗∈𝐽𝑛𝑠ℎ∈𝐻𝑘∈𝐼∪𝐽𝑛𝑠
𝑘≠𝑖

 
∀𝑖 ∈ 𝐼 ∪ 𝐽𝑛𝑠, 𝑠 ∈ 𝑆 (9) 

∑ 𝑋𝑘𝑖ℎ𝑗𝑠

𝑘∈𝐼
𝑘≠𝑖

+ ∑ 𝑋𝑘𝑖ℎ𝑗𝑠

𝑘∈𝐽𝑛𝑠
𝑘=𝑗

= ∑ 𝑋𝑖𝑘ℎ𝑗𝑠

𝑘∈𝐼
𝑘≠𝑖

+ ∑ 𝑋𝑖𝑘ℎ𝑗𝑠

𝑘∈𝐽𝑛𝑠
𝑘=𝑗

 
∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽𝑛𝑠, ℎ ∈ 𝐻, 𝑠 ∈ 𝑆 (10) 

∑ ∑ ∑ 𝑋𝑖𝑘ℎ𝑗𝑠 ≤ 1

𝑗∈𝐽𝑛𝑠𝑘∈𝐼𝑖∈𝐽𝑛𝑠
𝑖=𝑗

 
∀ℎ ∈ 𝐻, 𝑠 ∈ 𝑆 (11) 

∑ 𝑇𝑖𝑗𝑠 − ∑ 𝑇𝑗𝑖𝑠 = 𝑑𝑗 ( ∑ ∑ ∑ 𝑋𝑖𝑗ℎ𝑚𝑠

𝑚∈𝐽𝑛𝑠ℎ∈𝐻𝑖∈𝐼∪𝐽𝑛𝑠

)

𝑖∈𝐼∪𝐽𝑛𝑠𝑖∈𝐼∪𝐽𝑛𝑠

 ∀𝑗 ∈ 𝐼, 𝑠 ∈ 𝑆 (12) 

∑ 𝑊𝑗𝑖𝑠 − ∑ 𝑊𝑖𝑗𝑠 = 𝑝𝑗 ( ∑ ∑ ∑ 𝑋𝑖𝑗ℎ𝑚𝑠

𝑚∈𝐽𝑛𝑠ℎ∈𝐻𝑖∈𝐼∪𝐽𝑛𝑠

)

𝑖∈𝐼∪𝐽𝑛𝑠𝑖∈𝐼∪𝐽𝑛𝑠

 ∀𝑗 ∈ 𝐼, 𝑠 ∈ 𝑆 (13) 

𝑊𝑖𝑗𝑠 + 𝑇𝑖𝑗𝑠 ≤ 𝑐𝑣 (∑ ∑ 𝑋𝑖𝑗ℎ𝑚𝑠

𝑚∈𝐽𝑛𝑠ℎ∈𝐻

) ∀𝑖 ∈ 𝐼 ∪ 𝐽𝑛𝑠, 𝑗 ∈ 𝐼 ∪ 𝐽𝑛𝑠, 𝑠 ∈ 𝑆 (14) 

∑ 𝑇𝑖𝑗𝑠 = 0

𝑖∈𝐼

 ∀𝑗 ∈ 𝐽𝑛𝑠, 𝑠 ∈ 𝑆 (15) 

∑ 𝑊𝑗𝑖𝑠

𝑖∈𝐼

= 0 ∀𝑗 ∈ 𝐽𝑛𝑠, 𝑠 ∈ 𝑆 (16) 

𝑈𝑖ℎ𝑗 + 1 ≤ 𝑈𝑘ℎ𝑗 + 𝑀(1 − 𝑋𝑖𝑘ℎ𝑗𝑠) ∀𝑖, 𝑘 ∈ 𝐼; 𝑖 ≠ 𝑘, 𝑗 ∈ 𝐽𝑛𝑠, ℎ ∈ 𝐻, 𝑠 ∈ 𝑆 (17) 

𝑌𝑗 ∈ {0,1} ∀𝑗 ∈ 𝐽𝑛𝑠 (18) 

𝑍𝑖𝑗𝑠 ∈ {0,1} ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽𝑛𝑠 ∪ 𝑒, 𝑠 ∈ 𝑆 (19) 

𝑋𝑖𝑘ℎ𝑗𝑠 ∈ {0,1} ∀𝑖 ∈ 𝐼 ∪ 𝐽𝑛𝑠, 𝑘 ∈ 𝐼 ∪ 𝐽𝑛𝑠, ℎ ∈ 𝐻, 𝑗 ∈ 𝐽𝑛𝑠, 𝑠 ∈ 𝑆 (20) 

𝑇𝑖𝑗𝑠 , 𝑊𝑖𝑗𝑠 ≥ 0 ∀𝑖 ∈ 𝐼 ∪ 𝐽𝑛𝑠, 𝑗 ∈ 𝐼 ∪ 𝐽𝑛𝑠, 𝑠 ∈ 𝑆 (21) 

𝑈𝑖ℎ𝑗 ∈ 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽𝑛𝑠, ℎ ∈ 𝐻 (22) 

 
The objective function (2) minimizes sum of the depots fixed costs (scenario-independent) and the 

expected costs of each scenario including routing costs, penalty costs and vehicles fixed costs (scenario-
dependent) respectively. Constraint (3) ensures that a customer in any scenario could be assigned to a depot if 
the depot is opened. Constraint (4) ensures that each customer is assigned to exactly one depot in each scenario. 
Constraints (5) and (6) are depots capacity constraints in each scenario. Constraint (7) links the allocation and 



routing in each scenario. Constraint (8) ensures that, in each scenario, each customer is visited only once. 
Constraint (9) is the flow conservation constraint which forces that, in each scenario, the input flow to each 
customer/depot is equal to the output flow from that customer/depot. Constraint (10) checks the feasibility of the 
route in each scenario when starting the routes from the depots. Constraint (11) ensures that each vehicle is 
assigned at most to a single depot in each scenario. Constraints (12) to (14) control and impose the vehicles 
capacities in each scenario. Constraint (15) ensures that the amount of delivery demand when vehicles return to 
depots is zero. Constraint (16) ensures the amount of pickup demand when vehicles start routes from depots is 
zero. Constraint (17) is the sub-tour elimination constraint in each scenario. Constraints (18) to (22) are the 
integrality and non-negativity constraints. 

 
4. Solution approaches 

Metaheuristic algorithms have been widely used in the literature to solve optimization problems [46-48]. 
In this regard, the papers in the literature use either population-based evolutionary algorithms or single solution-
based local search algorithms. The former is powerful in diversification and the latter is powerful in intensification. 
In this paper, we attempt to propose a hybrid algorithm which is powerful in both diversification and intensification 
[47,48]. Indeed, hybrid algorithms attempts to benefit from the strengths of different algorithm in a single 
algorithm [49-54]. Accordingly, we proposed a hybrid algorithm by the combination of genetic algorithm (GA) (as 
a powerful algorithm in diversification) and two local search algorithms (as powerful algorithms in intensification). 

Genetic algorithm (GA), which was first developed by Holland [55], is one of the most well-known 
evolutionary optimization algorithms. GA evolves a population of randomly generated solutions with size Psize using 
crossover and mutation operators. At each iteration, a number of solutions are generated through crossover 
operator with rate CR and a set of other solution are generated through mutation operator with rate MR. In 
crossover, a pair of selected parents (using tournament selection mechanism) are crossed with the hope of 
creating better children. Despite crossover, mutation operator is employed on an individual solution in order to 
diversify the solution space and escape from the local optimum. These operators are employed to generate new 
solutions as a next offspring so that the current population and generated offspring are combined together for 
creating next generation. In this paper, we do not consider the elitism operator. GA can be used in various types 
of problems with appropriate genetic representation, fitness function, and evolution operators. 

For solving the proposed RCLRP-SPD, we propose two efficient hybrid GA by hybridizing the GA with 
variable neighborhood descent (VND) (HGAVND) and the GA with a local search (HGALS) [56]. In addition, the 
proposed model aims at locating depots which are less sensitive to disruption and lead to the minimum cost no 
matter which disruption scenario occurs. Indeed, the final solution would be the most reliable solution when 
exposed to any disruption scenario. Therefore, the located depot(s) is (are) the same for all scenarios. Since in the 
RCLRP-SPD the open depots are the same for all scenarios, a two-stage mechanism is developed in the algorithms. 
The first and the second stages are called “Location-Allocation” stage and “Vehicle Routing” stage respectively. In 
the Location-Allocation stage, the depots are located and the customers are allocated to the opened depots. Once 
the first stage is solved, its results are fed to the second stage and the routing decisions are made in the second 
stage. Indeed, the routing is solved for each scenario independently. Besides to the proposed HGAVND and HGALS 
algorithms, we also employ classical GA to better show how these hybridizations improve the performance of the 
classical GA. Therefore, we consider three combinations of algorithms to solve the two “Location-Allocation” and 
“Vehicle Routing” stages as GA→GA, GA→HGAVND, and GA→HGALS. For instance, the combination GA→GA 
means that the GA is used for solving both stages; and the combination GA→HGAVND states that stage 1 is solved 
using GA and stage 2 is solved using HGAVND. As it can be seen, for solving the “Location-Allocation” stage (i.e., 
stage 1), we only use classical GA but the “Vehicle Routing” stage (i.e., stage 2) is solved using all three algorithms 
(i.e., GA, HGAVND, and HGALS). 

 
4.1. Solution representation 

Any evolutionary algorithm's performance remarkably depends on its representation of the solution. Since 
GA is a population-based algorithm, the solution representation should not consume much memory. The solution 
representation contains two different parts and each part corresponds to a stage of the proposed algorithms. 
These parts are described in the following. 

 
i. Location-Allocation: Figure 3a shows the location-allocation decisions in a network with 8 customers.  

Numbers 1 to 8 represent the customers, and each “D” shows a depot. The number of “D”s plus 1 
demonstrates the number of located depots. In Figure 3, there are totally three located depots. Starting 
from the left, the customers are allocated to the first located depot until they will not exceed the capacity 
of the corresponding depot. For instance, customer number 1 has been allocated to the first depot. Then, 



customers number 3, 5, 8 and 4 should be allocated to the second located depot but only customers 3, 5 
and 8 can be allocated since adding customer 4 will exceed the capacity of the second depot. Therefore, 
the demand of customer number 4 is unmet. This procedure continues until the most possible customers 
are allocated to the located depots. Figure 3b illustrates the scheme of the location-allocation decisions.  

ii. Vehicle Routing:  Figure 4a shows the solution representation regarding the vehicle assignments and 
routing. Numbers 1 to 12 represent the customers. In this figure, each “V” signifies that the route is 
terminated and another route from the same depot is started, even though the accumulated demand has 
not exceeded vehicle capacity, while each “D” terminates the assignments of routes to the current depot 
and starts the assignment to the next depot. Note that every “D” represents a new depot and a new vehicle. 
A vehicle has been assigned to the first and the third depots, but two vehicles have been assigned to the 
second located depot. The route of the third located depot serves customers 9, 11 and 3. Since adding 
customer 6 exceeds the vehicle capacity, the route is terminated. Note that the capacity of depots is not 
taken into consideration during the decoding process. Therefore, a per unit penalty cost P is added to the 
objective function value whenever the total demand served by a depot exceeds its capacity. 
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Figure 3. Location-Allocation Representation 
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a) Vehicle Routing matrix 
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b) Scheme of Vehicle Routing 

Figure 4. Vehicle Routing Representation 
 

4.2. Initial population construction 
Each stage of the proposed algorithms requires an initial population. The initial population of the first stage 

is generated in a greedy manner. We generate an initial population including greedy heuristic solution as well as 
a random solution. The Location-Allocation part of the solution representation is then constructed by a greedy 
method with the hope that a good initial solution can be found within a reasonable time. In this greedy algorithm, 
all potential depots are opened and each customer is allocated to the closest located depot according to an 
increasing order of Di + Pi until the depot capacity is not exceeded; if exceeded, the next closest depot is selected. 
This greedy solution is then improved through the algorithm by closing unnecessarily opened depots. The 
population of the second stage is generated randomly.  

 
4.3. Fitness function 



The fitness function is defined by the solution representation and measures the quality of each solution. 
The fitness of each stage is calculated as follow: 
i. Location-Allocation: In this stage, the fitness function includes depots fixed cost, direct distance cost 

between the depots and customers location, and penalty cost of unmet customers. Since we want to 
minimize the cost, lower value of the fitness function implies higher fitness. 

ii. Vehicle Routing: In the second stage, the fitness function includes vehicles fixed cost, vehicles routing cost, 
constant P if the depot capacity is exceeded and the penalty cost of unmet customers. Since we want to 
minimize the cost, lower value of the fitness function implies higher fitness.  

 
4.4. Crossover operator 

To obtain a near - optimum solution, genetic evolutionary operators are used to create a better solution 
and replace them with those that existed in the initial population. Crossover is the GA's main operator, sharing 
information between two randomly selected parents in the hope of better offspring. These offspring are compared 
with respect to the fitness function and passed onto the next generation. In this paper, partially mapped crossover 
(PMX) is employed in both parts of “Location-Allocation” and “Vehicle Routing”. The PMX indexes in the middle 
part of the solution representation are exchanged and the missing stops replace their matching index in the second 
parent. Stop indexes are exchanged based on the mapping set, which is constructed by comparing the exchanging 
parts of two parents [57]. This popular crossover method is illustrated in Figure 5. Note that each "V" and "D" can 
be replaced by numbers. 

 

Parents 
10 3 9 4 1 6 2 5 7 8 

1 9 7 10 3 2 4 8 6 5 

  

Children 
6 1 9 10 3 2 4 5 7 8 

3 9 7 4 1 6 2 8 10 5 

Figure 5. PMX crossover 

 
4.5. Mutation operator 

Mutation is a strategy of diversification that aims to explore new areas of solution space, avoid early 
convergence, and escape from local optima. Through the mutation operator, three ‘Swap’, ‘2-Opt-a’, and ‘2-Opt-
b’ moves in the both “Location-Allocation” and “Vehicle Routing” parts. Using the ‘Swap’ operator, two genes from 
the chromosome are selected and swapped. Using the ‘2-Opt-a’ move, two points in the chromosome are selected 
and the order of the in-between genes is reversed. Using the ‘2-Opt-b’ move, two points in the chromosome are 
selected and the order of the in-between alleles is randomly changed. These mutation operators are illustrated in 
Figure 6. 

 

swap 

10 3 9 4 1 6 2 5 7 8 

                       ↑                                        ↑ 

10 3 2 4 1 6 9 5 7 8 

 
 

2-Opt-a 

10 3 9 4 1 6 2 5 7 8 

                 ↑                                        ↑ 

10 3 6 1 4 9 2 5 7 8 

 
 

2-Opt-b 

10 3 9 4 1 6 2 5 7 8 

                 ↑                                        ↑ 

10 3 6 9 1 4 2 5 7 8 

Figure 6. Examples of the ‘swap’, ‘2-Opt-a’ and ‘2-Opt-b’ mutation operators 

 

4.6. Hybrid genetic algorithm 
In this paper, we propose two hybrid GA by hybridizing the GA with VND (HGAVND) and the GA with a local 

search (HGALS). Both HGAVND and HGALS are employed to jointly solve routing in the “Vehicle Routing” part. 
Since the GA may fail to converge to a global optimum, we use VND and a local search to refine the GA search 
through successive iterations and maximize the chance of convergence to an optimal solution [58-61].  



The VND is a deterministic version of the variable neighborhood search (VNS) algorithm proposed by 
Mladenović & Hansen [58]. VND's basic idea is to explore a set of predefined neighborhood structures 
(N(l)(l=1,2,…,lmax)) successively in order to obtain a better solution. It explores a set of neighborhoods 
systematically in order to obtain various local optima and escape from local optima. The overview of the proposed 
hybrid GA-VND (HGAVND) algorithm is depicted in Figure 7. In the proposed HGAVND, we incorporate VND into 
the GA’s general scheme. This allows us to take advantage of VND features in order to improve the population 
generated by the GA and thus to complement the genetic search. In Figure 7, MaxIt_GA is the maximum number 
of iterations of the GA. In addition, p_hybrid is the probability of doing VND in the proposed HGAVND. 

It is noteworthy that implementing the VND at each iteration of the GA increases the computational time. 
Therefore, the VND is involved in the GA with a probability equal to prob(i). This value increases by the number of 
iterations. Accordingly, we give more chance to the VND in the later iterations. Then, as we find the promising 
regions of the feasible solution space, we gradually increase the probability of employment of VND [59]. The 
pseudo code of the VND proposed for HGAVND algorithm is depicted in Figure 8, wherein ItrH is the maximum 
iteration for the VND. 

 

Set parameters: Psize, MaxIt_GA, p_hybrid, CR, MR  
Generate initial random population of size Psize  
For i = 1: MaxIt_GA  

For j = 1: CR*Psize  
P1 & P2: Select parents for crossover  
Cross P1 & P2 and generate two children O1 & O2  
Add O1 & O2 to the next generation  

EndFor  
For k = 1: MR*Psize  

P3: Select a solution for mutation  
Mutate P3  
Add created new solution to the next generation   

EndFor  

𝒑𝒓𝒐𝒃(𝒊) =
𝟏

(𝒑_𝒉𝒚𝒃𝒓𝒊𝒅)𝑴𝒂𝒙𝑰𝒕_𝑮𝑨−𝒊 ;  

IF 𝑟𝑛𝑑() ≤ 𝑝𝑟𝑜𝑏(𝑖)  
P4: Get the current best solution for doing local search  
Do VND on P4 and create new solution P5 // Local Search by VND 
Add P5 to the next generation  

EndIF  
EndFor   

Figure 7. HGAVND algorithm 
 

1 Let lmax be the number of the neighborhood structures (N(l)) 

2 S0 ⟵ Generate/get Initial Solution (); 
3 Set l ⟵ 1; 
4 While (l ≤ lmax) Do 
5 Set i ⟵ 1; 
6  While i ≤ ItrH 
7  S’ ⟵ Generates a neighborhood of S0 using N(l) 
8  IF f(S’) < f(S0) then 
9  S0 = S’; 

10  i = 1; 
11  Else 
12  i = i + 1; 
13  EndIF 
14  EndWhile 
15  l=l+1; 
16 EndWhile 

Figure 8. VND’s pseudo code 
 



In the VND used to complement the GA in our hybrid approach, we use seven neighborhoods (lmax = 7) in 
both hybridization algorithm, namely N(1), N(2), N(3), N(4), N(5), N(6) and N(7), which are described in the 
following [7], [33], [60]: 

• N(1): randomly selects two customers assigned to two different routes and interchanges them. 

• N(2): randomly selects a customer and inserts it at a random position in a different route. 

• N(3): randomly selects two customers assigned to a route and interchanges them. 

• N(4): randomly selects two different routes and sequential customers are interchanged. 

• N(5): randomly selects two customers assigned to a route and customers of the in-between alleles are 
reversed. 

• N(6): three arcs which are on the same route are deleted. Then three new arcs are created. 

• N(7): randomly selects two sequential customers assigned to a route and adds them to the random position 
in another random route with same sequential. 

 

1 Let lmax be the number of the neighborhood structures (N(l)) 

2 S0 ⟵ Generate Initial Solution (); 
3 Set i ⟵ 1; 
4 While i ≤ ItrH 
5  For j = 1: lmax 
6  S(j) ⟵ Generates a neighborhood of S0 using N(j) 
7  EndFor 
8  f(S’) ⟵ min {f(S(1)), f(S(2)), …, f(S(lmax))} 
9  IF f(S’) < f(S0) then 

10  S0 = S’; 
11  i = 1; 
12  Else  
13  i = i + 1 
14  EndIF 
15 EndWhile 

Figure 9. Local search’s pseudo code 
 
HGALS is similar to HGAVND, with difference in local search. In HGAVND we obtain local optima in every 

neighborhood structure, but in HGALS, all the neighborhood structures are applied together and we obtain local 
optima in all neighborhood structures. The pseudo code of the local search proposed for HGALS algorithm is 
depicted in Figure 9, wherein ItrH is the maximum number of iterations of the proposed local search in the HGALS. 

 
5. Computational study 

In this section, we present extensive computational results in order to assess the effectiveness of the 
proposed GA, HGAVND and HGALS algorithms for solving the RCLRP-SPD in two stages. The GA, HGAVND, and 
HGALS algorithms are coded using MATLAB R2014a and the mathematical model is solved with CPLEX 12.7.1.0 
(with a time limit of 3h) solver in GAMS 24.9.1 software on Intel®Core™i7-720QM (1.6 GHz, 4GB RAM). 

 
5.1. Parameter setting 

The efficiency and effectiveness of all meta-heuristic algorithms are significantly influenced by its 
parameters. In this study, the parameters optimization of the proposed GA, HGAVND and HGALS are performed 
based on Taguchi methods. The experimental design of Taguchi has been widely used for optimization problems. 
Taguchi design is based on two major tools: orthogonal array (OA) and signal-to-noise (S/N) ratio. The OA is a 
matrix of numbers containing experimental schemes based on different levels of factors. The S/N ratio is the 
measure of variation and guarantees the robustness of this kind of experimental design. The term “signal” 
represents "mean response variable" as the desired value and "noise" represents "standard deviation" as 
undesirable value [61]. Taguchi method is utilized via Minitab 18 software for design of experiments (DOE) and 
analyzing their results. The aim of the Taguchi method is to maximize the S/N ratio which is calculated by Equation 
(23) for minimization problems for each parameter i on its related level j. 

 

(𝑆 𝑁  𝑟𝑎𝑡𝑖𝑜⁄ )𝑖𝑗 = −10 log10 (
∑ 𝑍𝑖𝑗

2

𝑛
)                                       ∀𝑖, 𝑗 (23) 

 



where zij is the objective function value using parameter i on level j and n is the number of repetitions for the 
corresponding experiment.  
 
 
 
 
 

Table 1. Different levels of GA parameters in “Location-Allocation” parameters 

GA parameters 
“Location-Allocation” 

Levels 

1 2 3 4 

Number of generations 50 75 100 200 
Psize 200 250 275 300 
CR 0.6 0.7 0.8 0.9 
MR 0.2 0.3 0.4 0.5 

 

 
Figure 10. The S/N value index of hybrid algorithms for “Location-Allocation” parameters 

 
Since the proposed algorithms are executed in two stages, the parameters of each stage are tuned 

separately as follows:  
i. Location-Allocation: Since GA solves the first stage, different levels of the “Location-Allocation” parameters 

for tuning process is shown in Table 1. According to the S/N ratio plot shown in Figure 10, it is inferred that 
the number of generations, Psize, CR and MR are tuned at 100, 200, 0.8 and 0.5, respectively. 

ii. Vehicle Routing: Since hybrid algorithms solve the second stage, different levels of the “Vehicle Routing” 
parameters for tuning process is shown in Table 2. According to the S/N ratio plot shown in Figure 11, it is 
inferred that the number of generation, population size, crossover rate, mutation rate, number of 
generation in hybridization algorithms and parameter that affects the probability of starting the 
hybridization algorithms, are tuned at 150, 200, 0.9, 0.4, 100 and 1.15, respectively. 

 
Table 2. Different levels of hybrid parameters in “Vehicle Routing” parameters 

GA parameters 
“Vehicle Routing” 

Levels 

1 2 3 

Number of generations 100 150 200 

Psize 150 200 250 

CR 0.7 0.8 0.9 

MR 0.2 0.3 0.4 

ItrH 50 75 100 
p_hybrid 1.1 1.15 1.2 

 



 
Figure 11. The S/N value index of hybrid algorithms for “Vehicle Routing” parameters 

5.2. Computational results 
This section provides comprehensive numerical results to demonstrate the efficacy of the proposed MILP 

model and the solution approaches. Numerous instances are generated based on [11] and solved in this section. 
Regarding the failure probability, 5 levels are considered as [0.01, 0.1], [0.1, 0.2], [0.2, 0.3], [0.3, 0.4], [0.8, 0.9], 
which are expressed as “a” to “e”, respectively. These instances are labeled as |I|-|J|-|H|-a, where |I| is the 
number of customers, |J| is the number of potential depots, |H| is the number of vehicles, and finally “a” denotes 
the level of failure probability. Each instance of the problem is executed 30 times and the results, including the 
best, the worst, the average and the standard deviation (σ) values are reported afterwards.  

The potential location of customers and depots are randomly generated in a continuous space between [1, 
10]. The cost between two nodes is calculated as the Euclidean distance between them. The delivery demand and 

pickup demand of each customer are randomly distributed in [10, 100]. The unmet-demand penalty i is chosen 
from [100, 120]. The fixed setup cost of each depot and vehicle are drawn uniformly from [100, 500] and [50, 100], 
respectively. We first calculate the C ̅and D̅ as: 

 

𝐶̅ =
∑ 𝑑𝑖

𝐼
𝑖=1

|𝐽|
 (24) 

𝐷̅ =
∑ 𝑑𝑖

𝐼
𝑖=1

|𝐻|
 (25) 

 
 Each capacity cdj and cv are then drawn uniformly from [1.5C,̅ 2.5C]̅ and [D̅, 1.5D̅], respectively. In medium 

and large instances, all parameters are generated like small instances, except cdj, cv and i that are drawn 
uniformly from [1.5C̅, 1.8C]̅, 2/3[D̅, 1.5D̅] and [50, 100], respectively. 

 
5.2.1. Analysis of small-size instances 

Three sets of instances are solved with different failure probability from “a” to “e”, where the failure 
probability increases from “a” to “e”. Two number of potential depots are considered for small-size instances. 
Therefore, the number of all scenarios is then 22 and instances are solved in four scenarios. The results of CPLEX, 
GA, HGAVND, and HGALS have been provided in Table 3. Since for all 30 executions, the optimal solution is found, 
Table 3 contains only the best values (best, worst and average are the same and σ = 0). The results are compared 
in terms of objective function value, CPU time and the number of opened depots. 

It can be seen that for all the small-size instances, all three GA, HGAVND, and HGALS reach the optimal 
solution; however, GA has lower CPU time since no extra local search operator is employed. In addition, the 
proposed HGALS leads to smoothly lower CPU time comparing to HGAVND. In addition, in the solution of instances 
7-2-3-c,d,e, 8-2-3-e and 9-2-3-e, no depot has been opened since the failure probability is high and the model 
prefer not to allocate customers to unreliable depots.  

Two analyses are illustrated on the result of the CPLEX algorithm in Figure 12. Figure 12a illustrates that 
the total cost increases with increasing the failure probability, while there is no change in 7-2-3 (“c”, “d” and “e”) 
instances because in these instances the penalty cost is paid to all customers and no location and routing decisions 
are performed. Figure 12b connects the running times resulting from running the CPLEX on different sized 
instances, there is no growth in "e" instances because in these instances the penalty cost is paid to all customers 
and location and routing is not performed. Note that all the meta-heuristic algorithms have reached the optimal 



solution. In the majority of instances (11 out of 15), metaheuristic algorithms reach the optimal solution in 
significantly less CPU time comparing to CPLEX. 

 
Table 3. Computational results of the small instances 

Instance 
CPLEX  GA 

Time (s) Cost Open depot  Time (s) Cost Open depot 

7-2-3-a 13.54 748.98 1  2.67 748.98 1 
7-2-3-b 25.89 788.82 1  2.66 788.82 1 
7-2-3-c 8.35 839.00 -  2.79 839.00 - 
7-2-3-d 1.01 839.00 -  2.69 839.00 - 
7-2-3-e 1.02 839.00 -  3.21 839.00 - 

        

8-2-3-a 33.38 604.87 2  3.50 604.87 2 
8-2-3-b 116.09 665.74 2  6.05 665.74 2 
8-2-3-c 68.03 701.02 2  5.97 701.02 2 
8-2-3-d 284.10 745.83 2  6.20 745.83 2 
8-2-3-e 2.00 878.00 -  7.15 878.00 - 

        

9-2-3-a 161.10 666.25 1  10.76 666.25 1 
9-2-3-b 1948.02 686.75 1  10.67 686.75 1 
9-2-3-c 661.61 753.53 1  10.43 753.53 1 
9-2-3-d 3469.29 799.40 1  10.59 799.40 1 
9-2-3-e 0.64 992.00 -  10.69 992.00 - 

Instance 
HGAVND  HGALS 

Time (s) Cost Open Depot  Time (s) Cost Open Depot 

7-2-3-a 6.19 748.98 1  5.44 748.98 1 
7-2-3-b 4.21 788.82 1  4.62 788.82 1 
7-2-3-c 6.01 839.00 -  5.40 839.00 - 
7-2-3-d 5.23 839.00 -  5.40 839.00 - 
7-2-3-e 6.10 839.00 -  5.51 839.00 - 

        

8-2-3-a 6.16 604.87 2  5.45 604.87 2 
8-2-3-b 8.48 665.74 2  6.02 665.74 2 
8-2-3-c 8.82 701.02 2  7.96 701.02 2 
8-2-3-d 7.88 745.83 2  11.69 745.83 2 
8-2-3-e 7.51 878.00 -  8.44 878.00 - 

        

9-2-3-a 6.57 666.25 1  7.21 666.25 1 
9-2-3-b 9.23 686.75 1  8.97 686.75 1 
9-2-3-c 9.91 753.53 1  9.86 753.53 1 
9-2-3-d 10.81 799.40 1  10.66 799.40 1 
9-2-3-e 10.60 992.00 -  11.87 992.00 - 

 

  

a) Total cost vs. Failure probability b) CPU time vs. Instance size 

Figure 12. Small-scale instances analysis in CPLEX 
 

5.2.2. Analysis of medium instances 
Four instances are solved with "a" failure probability because we mentioned in the introduction section 
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for medium and large instances comparing to small instances. Therefore, the results of medium and large 
instances only contain the failure probability “a” which is low and more closed to reality. Furthermore, three 
potential depots are considered that leads to the total 23 number of different scenarios. Among them, we choose 
those scenarios that have the largest probability of occurrence. Here, instances are solved in four (|J|+1) scenarios 
that have the largest probability of occurrence. The results of the best, the worst, the average and σ values are 
given in Table 4 and CPLEX time limit is 10800 seconds. The column “DIFF (%)” shows the gap between the meta-

heuristic cost and CPLEX cost and is calculated as 𝐷𝐼𝐹𝐹 =
𝑂𝐹𝑉𝑚𝑒𝑡𝑎−ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐−𝑂𝐹𝑉𝐶𝑃𝐿𝐸𝑋

𝑂𝐹𝑉𝐶𝑃𝐿𝐸𝑋
. Figure 13a shows that only 

in the third instance (20-3-4-a), CPLEX has obtained a better result than all meta-heuristic algorithms. According 
to the Table 4 and “Open depot” column, we found out that CPLEX and solution algorithms have led to the 
different location of depots because in the solution algorithms, the “Location-Allocation” stage is solved first and 
this lead to a local optimum (this is a heuristic approach); but still closed-to-optimal solutions are found. Figure 
13b connects the running times resulting from running the meta-heuristic algorithms on different instances and 
shows that hybrid algorithms require more time. Moreover, the results show that GA, HGAVND, and HGALS 
algorithms have satisfactory performance in terms of solution quality and CPU time. 

 
Table 4. Computational results of the medium instances 

Instance 
Solution 

approach 
Time (s) BestCost WorstCost AvgCost 

Open depot of 
BestCost 

DIFF 
(%) 

σ 

10-3-3-a CPLEX 10752.31 663.85 - - 1 - - 
 GA 14.00 663.85 663.85 663.85 1 0.00 0 
 HGAVND 32.54 663.85 663.85 663.85 1 0.00 0 
 HGALS 24.93 663.85 663.85 663.85 1 0.00 0 
        

15-3-3-a CPLEX 10800.00 528.85 - - 1 - - 
 GA 132.73 530.98 536.25 533.84 1 0.40 1.874 
 HGAVND 145.09 525.59 532.86 529.78 1 -0.61 3.430 
 HGALS 146.26 525.59 534.92 528.91 1 -0.61 4.125 
        

20-3-4-a CPLEX 10800.00 947.85 - - 1 - - 
 GA 177.82 1022.58 1035.19 1028.65 1,2 7.88 4.560 
 HGAVND 193.23 1021.96 1035.72 1028.30 1,2 7.81 5.800 
 HGALS 189.03 1024.63 1033.58 1027.85 1,2 8.10 3.986 
        

25-3-4-a CPLEX 10800.00 975.68 - - 1,3 - - 
 GA 187.84 901.24 914.10 907.97 1,3 -7.62 4.078 
 HGAVND 202.79 900.86 915.27 907.84 1,3 -7.48 5.966 
 HGALS 212.43 897.93 910.22 904.68 1,3 -7.96 5.587 

 
 

  
a) Total best cost vs. Instance size b) CPU time vs. Instance size 

Figure 13. Medium-scale instances analysis 
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5.2.3. Analysis of large instances and benchmark 
Twelve instances with |J|+1 scenarios that have the largest probability of occurrence are solved in “a” 

failure probability and results are given in Table 5, in which the number and probability of scenarios are written 
below the instances as well. Figure 14 shows that HGAVND and HGALS algorithms significantly outperform GA in 
terms of solution quality. In the sixth instance (40-5-6-a), HGALS has obtained a disappointing result, but according 
to Table 5 and “Open depot” columns, we found out that they have a different location, because in the meta-
heuristic algorithms, first the “Location-Allocation” is solved and this is a heuristic approach. Figure 14 shows that 
HGAVND is between the GA and HGALS in term of CPU time for small and medium instances. But this algorithm 
performs faster when dealing with large instances. Finally, the performance of the proposed algorithms is 
compared against the instances derived from Barreto’s test set by Angelelli and Mansini’s separation approach 
(i.e., BAM) benchmark in the literature [62] as reported in Table 6. This comparison shows the superiority of the 
proposed algorithms compared to those of in the literature. 

 

 
Figure 14. Best cost vs. Instance size 

 
 

 
Figure 15. CPU time vs. Instance size 
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Table 5. Computational results of the large instances 
Instances GA  HGAVND  HGALS 

Time 
(s) 

Best Worst Avg σ Depot 
 Time 

(s) 
Best Worst Avg σ Depot 

 Time 
(s) 

Best Worst Avg σ Depot 

30-4-4-a 
5(0.9888) 

274 1475.5 1481.3 1478.9 2.54 1,3,4  292 1470.0 1481.6 1473.2 4.66 1,3,4  297 1466.5 1476.9 1470.9 2.35 1,3,4 

30-5-5-a 
6(0.9653) 

332 1513.4 1537.9 1530.5 9.02 1,3,4  342 1509.3 1527.6 1518.3 7.34 1,3,4  350 1511.8 1527.2 1521.7 5.45 1,3,4 

35-4-5-a 
5(0.9949) 

304 1182.8 1191.4 1187.3 3.37 1,2,3  320 1178.6 1189.4 1182.1 4.50 1,2,3  337 1176.7 1185.0 1181.0 2.93 1,2,3 

35-5-5-a 
6(0.9656) 

336 1790.1 1812.8 1804.8 8.27 2,3,5  351 1786.4 1810.1 1800.1 10.47 2,3,5  364 1788.2 1806.9 1799.2 6.95 2,3,5 

40-4-5-a 
5(0.9946) 

318 1568.6 1578.0 1572.4 3.64 1,2,4  330 1543.0 1567.1 1554.2 8.07 1,2,4  344 1539.0 1542.2 1540.6 0.99 1,2,4 

40-5-6-a 
6(0.9644) 

364 1252.5 1265.1 1252.8 10.83 1,4,5  381 1220.9 1255.6 1241.3 12.99 1,4,5  428 1242.2 1265.4 1254.8 8.65 1,2,4,5 

40-6-6-a 
7(0.9610) 

423 1663.0 1690.3 1675.0 17.08 2,4,5,
6 

 456 1667.6 1690.6 1679.7 7.93 2,4,5,
6 

 459 1659.7 1680.5 1671.1 9.08 2,4,5,6 

50-4-6-a 
5(0.9756) 

350 1441.7 1467.0 1457.0 10.05 2,3,4  387 1428.7 1465.6 1451.4 13.46 2,3,4  403 1439.9 1454.7 1448.2 5.29 2,3,4 

50-5-6-a 
6(0.9706) 

434 1990.0 2027.0 2014.7 12.92 1,2,3,
4 

 446 1983.4 2017.8 2004.0 13.57 1,2,3,
4 

 465 1981.9 2003.7 1995.8 8.35 1,2,3,4 

50-6-7-a 
7(0.9357) 

886 1705.2 1775.6 1753.9 25.17 2,3,4,
5 

 902 1702.4 1777.5 1744.4 24.31 2,3,4,
5 

 919 1694.8 1752.8 1737.3 21.49 2,3,4,5 

70-4-5-a 
5(0.9684) 

576 1054.6 1066.1 1060.3 4.35 2,4  617 1035.9 1047.3 1043.3 4.17 2,4  632 1026.2 1039.8 1034.2 4.24 2,4 

100-4-5-a 
5(0.9777) 

679 1110.4 1124.0 1116.2 4.64 1,2,3  701 1056.7 1077.1 1066.0 7.02 1,2,3  740 1045.8 1060.2 1051.0 4.45 1,2,3 

 
 
 
 
 
 
 
 
 
 
 



Table 6. Computational results for the BAM data-set 

Instances DSS1 

 CPLEX  B&C  GA  HGAVND  HGALS  

UB Gap (%) Time (s) Obj. Time (s) Obj. Time (s) Obj. Time (s) Obj. Time (s) 

Srivastava86-8x2 W  873.58 0.00 1.59  873.58 0.00  873.58 3.97  873.58 5.33  873.58 5.83  
Srivastava86-8x2 Z  806.06 0.00 2.89  806.06 0.00  806.06 4.06  806.06 5.87  806.06 5.81  
Perl83-12x2 W  243.98 0.00 9.95  243.98 0.57  243.98 5.48  243.98 7.29  243.98 7.95  
Perl83-12x2 Z  243.98 0.00 16.79  243.98 0.65  243.98 5.92  243.98 7.23  243.98 8.35  
Gaskell67-21x5 W  528.42 0.00 5647.23  528.42 290.18  557.12 15.11  557.12 17.73  557.12 18.54  
Gaskell67-21x5 Z  513.30 0.00 7902.63  513.30 89.43  513.30 14.06  513.30 17.00  513.30 19.11  
Gaskell67-22x5 W  653.80 0.00 5135.28  653.80 3.76  653.80 14.75  653.80 18.36  653.80 19.02  
Gaskell67-22x5 Z  653.80 0.00 6282.74  653.80 2.66  653.80 15.59  653.80 19.46  653.80 19.74  
Min92-27x5 W  3326.81 12.63 14400.00  3142.02 19.66  3142.02 24.15  3142.02 27.56  3142.02 29.05  
Min92-27x5 Z  3301.85 11.62 14400.00  3142.02 18.12  3142.02 22.29  3142.02 25.61  3142.02 27.41  
Gaskell67-29x5 W  597.50 6.13 14400.00  592.10 6.76  592.10 21.18  592.10 30.70  592.10 33.36  
Gaskell67-29x5 Z  597.50 8.38 14400.00  592.10 100.91  592.10 24.39  592.10 31.58  592.10 34.94  
Gaskell67-32x5_1 W  757.52 21.91 14400.00  696.38 5694.09  696.38 47.36  696.38 53.87  696.38 55.97  
Gaskell67-32x5_1 Z  719.52 20.74 14400.00  643.37 259.67  643.37 50.68  643.37 57.42  643.37 59.28  
Gaskell67-32x5_2 W  643.94 14.98 14400.00  595.27 15.68  595.27 32.20  595.27 37.15  595.27 37.49  
Gaskell67-32x5_2 Z  606.90 12.04 14400.00  564.33 30.90  564.33 31.08  564.33 35.55  564.33 37.80  
Gaskell67-36x5 W  625.50 32.71 14400.00  540.37 27.20  540.37 42.25  540.37 51.45  540.37 53.92  
Gaskell67-36x5 Z  603.56 25.37 14400.00  540.37 46.46  540.37 23.93  540.37 47.36  540.37 51.21  
Ch69-50x5 W  N/A - -  708.37 14400.00  708.37 198.26  708.37 209.78  708.37 213.73  
Ch69-50x5 Z  N/A - -  701.91 14400.00  701.63 212.67  701.63 221.71  700.96 232.20  
Perl83-55x15 W  N/A - -  1330.85 14400.00  1338.30 367.51  1328.95 392.82  1328.95 405.13  
Perl83-55x15 Z  N/A - -  1338.30 14400.00  1330.70 332.62  1325.72 388.10  1322.61 394.22  
Ch69-75x10 W  N/A - -  1177.65 14400.00  1168.34 484.06  1135.86 522.10  1133.03 529.49  
Ch69-75x10 Z  N/A - -  1108.82 14400.00  1110.49 508.44  1077.56 548.19  1077.56 565.07  
Perl83-85x7 W  N/A - -  1901.09 14400.00  1863.35 711.28  1855.91 731.47  1855.55 734.69  
Perl83-85x7 Z  N/A - -  1893.28 14400.00  1881.04 630.75  1858.72 696.28  1860.85 705.29  
Daskin95-88x8 W  N/A - -  533.37 14400.00  536.93 741.93  499.13 780.18  498.58 787.53  
Daskin95-88x8 Z  N/A - -  487.81 14400.00  482.75 765.76  479.99 801.63  479.99 809.28  
Ch69-100x10 W  N/A - -  1079.41 14400.00  1013.48 859.90  1015.43 933.67  1012.80 968.70  
Ch69-100x10 Z  N/A - -  1038.26 14400.00  1015.17 869.79  998.50 954.87  998.50 981.35  
Average       962.15 5980.22  958.15 236.05  952.66 255.91  952.39 261.72  

DSS1: Demand Separation Strategy 
Italic numbers present the optimal solution 
Bold numbers present the best solution in each instance 
 

 
 



5.2.4. Analysis in the different number of scenarios 
According to the previous section, we choose HGALS and all results are obtained from HGALS. The reason 

for selecting HGALS is that the HGALS obtains better solutions in terms of the objective function value and the 
computational time. In addition, the HGALS has had also higher convergence rate (i.e., lower standard deviation 
when being executed several times). Therefore, the analyses obtained from the HGALS algorithm would be more 
validated. Since the number of scenarios is different in Table 7, for a fair comparison of costs, the objective 
function must be calculated as follows: 

 

min  𝑂𝐹𝑉 = ∑ 𝑓𝑑𝑗𝑌𝑗 +
1

∑ 𝑝𝑟𝑠𝑠∈𝑆
× ∑ 𝑝𝑟𝑠(∑ ∑ ∑ ∑ 𝑡𝑐𝑖𝑘𝑋𝑖𝑘ℎ𝑗𝑠 +𝑗∈𝐽𝑛𝑠ℎ∈𝐻𝑘∈𝐼∪𝐽𝑛𝑠𝑖∈𝐼∪𝐽𝑛𝑠𝑠∈𝑆𝑖∈𝐽

∑ 𝑍𝑖𝑒𝑠𝜃𝑖 + ∑ ∑ ∑ 𝑓𝑣ℎ∈𝐻 𝑋𝑗𝑖ℎ𝑗𝑠𝑖∈𝐼𝑗∈𝐽𝑛𝑠𝑖∈𝐼 )  
(26) 

 
Table 7. Computational results instances with the different number of scenarios In

stan
ce 

Number of scenarios 

1  5  11  16 Cost  
Increase 

(%) 
Time (s) Cost Depot  Time (s) Cost Depot  Time (s) Cost Depot  Time (s) Cost Depot 

3
0

-4
-4

-a 

180.06 1455.20 1 
3 
4 

 290.28 1472.41 1 
3 
4 

 521.56 1484.16 1 
3 
4 

 591.17 1481.93 1 
3 
4 

1.83 

                 

3
5

-4
-5

-a 

198.19 1173.52 1 
2 
3 

 313.22 1183.22 1 
2 
3 

 531.56 1180.69 1 
2 
3 

 665.09 1183.02 1 
2 
3 

0.81 

                 

4
0

-4
-5

-a 

210.32 1533.97 1 
2 
4 

 335.01 1569.26 1 
2 
4 

 574.21 1559.26 1 
2 
4 

 660.52 1570.52 1 
2 
4 

2.38 

                 

5
0

-4
-6

-a 

244.61 1381.66 2 
3 
4 

 400.50 1455.78 2 
3 
4 

 626.36 1469.01 2 
3 
4 

 755.35 1460.36 2 
3 
4 

5.69 

 
 

  
a) Best cost vs. Number of scenarios b) CPU time vs. Number of scenarios 

Figure 16. Analysis in a different number of scenarios 
 

Four instances are solved in "a" failure probability. Four potential depots are considered and the number 
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occurrence. The results are given in Table 7. Figure 16a shows that the smallest cost of each instance is in the one 
scenario, which does not take into account the disruptions. With increasing the number of scenarios, costs are 
rising, but there is not much difference between costs in 5, 11 and 16 scenarios. As shown in Figure 16a and Figure 
16b, we conclude that the number of scenarios that previously considered (|J|+1) was correct and suitable in 
terms of time. 

The last column “Cost increase (%)” in Table 7 is calculated as   
𝑂𝐹𝑉16 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠−𝑂𝐹𝑉1 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜

𝑂𝐹𝑉1 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜
 that OFV1 scenario 

represents the total cost if disruptions are not assumed and the OFV16 scenarios represent the total cost if all 
disruptions are assumed. The results show that percentage of increased costs are between one to six percent that 
each manager in the supply chain is willing to accept it, because not considering the disruptions, imposed the 
staggering cost on the system.  
 

 
Figure 17. Total cost vs. Capacity of depots 

 

 
Figure 18. Total cost vs. Capacity of vehicles 

 
Figures 17 and 18 illustrate the sensitivity of the total cost versus the capacity of depots and vehicles, 

respectively. It can be seen in both Figures 17 and 18 that increasing the capacity will decreases the total cost. 
Actually, when the capacity of depots and vehicles increases, two event happen as: 1) less number of depots are 
opened and consequently lower fixed cost is imposed to the solution and 2) customers are allocated to closer 
depots and consequently lower transportation cost is paid in the solution.  
 
6. Conclusion 

This paper develops a new mixed-integer mathematical model for a reliable capacitated location-routing 
problem with simultaneous pickup and delivery, wherein the depots are exposed to the risk of disruption. Any 
disruption in the location-routing network imposes a huge cost on the company and its stockholders. Considering 
disruption in the design phase of the network will alleviate this impact and let the network to resist disruption. 
The objective function of the proposed model minimizes the total expected cost of the network including the sum 
of location cost of depots, routing cost of vehicles and cost of unfulfilled demand of customers. The proposed 
model is solved for small-sized instances and for large-sized problems, three efficient meta-heuristics are tailored 
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and their performance is investigated through a comprehensive experimental research. All the meta-heuristics 
algorithms reach the optimal solution in the small instances and better solution comparing to CPLEX in the most 
cases in the medium instances, wherein the CPLEX is stopped after an enough huge computational time. The 
computational results demonstrate that the hybrid algorithms significantly outperform the classical genetic 
algorithm in terms of solution quality.  

Possible future extensions include using multiple products, using time window for products, considering 
the location-routing-inventory problem and accounting for the cost of carbon emissions and developing other 
meta-heuristics for the problem. In addition, comparing the proposed hybrid meta-heuristic algorithms with other 
existing meta-heuristic algorithms such as Tabu Search (TS), Particle Swarm Optimization (PSO) and Differential 
Evolution (DE) algorithm would be an important future research direction. 
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