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MIMO systems
Zahran Hajji, Student Member IEEE, Abdeldjalil Aïssa-El-Bey, Senior Member IEEE and

Karine Amis, Member IEEE

Abstract—In this paper, we consider large-scale MIMO systems
and we address the channel estimation problem. We propose an
iterative receiver consisting of the cascade of a semi-blind least-
squares channel estimation algorithm with a simplicity-based
detection algorithm for finite-alphabet signals (FAS and FAS-
SAC). A minimum number of pilot sequences is used to get
an initial channel estimation. The detection algorithm outputs
are then used to refine it gradually. Two feeding methods are
studied. The first one uses raw detection outputs. The second
one is based on hard decisions and enables better performance.
Theoretical MSEs are calculated in both cases. Simulations assess
the efficiency of the proposed iterative procedure compared to the
state-of-the-art methods and show that it performs very close to
the ideal scenario where all the communication frame sequences
are known.

Index Terms—Large-scale MIMO, Channel estimation, finite-
alphabet, simplicity, semi-blind, Joint channel estimation and
detection.

I. INTRODUCTION

The predicted exponential growth in the number of mobile
connected machines and the traffic of data they represent
motivate 5G designers to look for new technologies and ap-
proaches to address the mounting demand. It was theoretically
demonstrated that usual schemes cannot achieve the sum-
rate capacity of multiuser wireless systems and the maximum
number of supported users is limited by the total amount of
orthogonal resources [1]. To overcome this problem and in
order to support massive connectivity of users and devices,
enhanced technologies are needed.

The massive MIMO (Multiple-Input Multiple-Output) con-
cept is considered to address technological challenges raised
by high-volumes of traffic together with the continuously-
increasing number of connected devices in communication
systems such as 5G and beyond, internet of things (IoT)
and wireless sensor networks (WSN) [2], [3]. The idea is
to implement a large number of antennas to better exploit
the spatial diversity so as to provide higher throughput under
spectrum limitations. Massive MIMO [4] (also called Large-
Scale Antenna Systems) refers to a wireless communication
system, and can be seen as a particular large-scale multiple-
input multiple-output system that involve high dimensions.
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The performance of large-scale MIMO systems may highly
depend on the accuracy of channel state information (CSI).
The effect of imperfect CSI on the achievable capacity is
investigated in several papers, where a lower bound on capac-
ity is defined as a function of the Cramer-Rao bound (CRB)
[5]–[8]. In [9], the authors showed that the capacity gain of
the perfect CSI case over the imperfect one decreases when
the SNR increases. This is due to the fact that the two cases
share the same optimal input covariance matrix which tends
to the identity matrix for high SNR. However, when CSI is
required at the transmitter to determine the precoding scheme,
the degradation due to erroneous channel estimates increases
with the SNR and leads to the saturation of the effective SNR.

CSI is usually estimated thanks to known training sequences
inserted in the data frame. This approach is well investigated
in several works. It consists in dividing the transmission into a
training phase and a data phase. In the training phase, known
pilot sequences at the transmitter and receiver sides are trans-
mitted in order to calculate an estimate at the receiver. This
estimate can be obtained using ML [10] or MMSE criterion
[11] and then it is used for detection in the data phase. When a
small number of pilots is considered, the throughput loss due
to pilots would be less at the price of an inaccurate estimate
of the channel which degrades the detection performance. On
the other hand, when large pilot sequences are considered, the
quality of the channel estimate improves but the time for data
transmission is reduced comparatively.

The problem of the minimum number of pilots is addressed
in point-to-point frequency flat and selective channels [12],
[13], multiuser MIMO channels [14]. In [12], the authors
showed that their optimal number can be made equal to the
number of transmit antennas by adjusting the power level
used to transmit pilot sequences (higher than for data). With
uniform power allocation between pilots and data, the optimal
number can be much larger than the number of transmit
antennas, which reduces the spectrum efficiency and thus
limits the benefit of large-scale MIMO systems. The multiuser
MIMO channel estimation is investigated in [14] together with
the question of the required number of training sequences.
Given the coherence time and the number of BS antennas, the
optimal number of pilot sequences and the optimal number of
users to serve simultaneously are fixed by maximizing a lower
bound on the sum-rate on the downlink.

To avoid the spectral efficiency loss, all resources can
be allocated to the data and the channel can be blindly
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References Channel
estimation

Detection
algorithm Complexity Performance Spectral

efficiency
System

Configuration
E. Nayebi et al. [11] EM MMSE High + Poor n > N
C. H. Aldana et al. [20] EM MMSE Very high ++ Very poor ∀(N,n) ∈ N2

E. de Carvalho et al. [23] EM MMSE Very high ++ Poor N = 1 and n ⩾ 2
M. Abuthinien et al. [24] ML MMSE High ++ Poor n ⩾ N
Proposed method LS FAS Medium +++ Good ∀(N,n) ∈ N2

TABLE I: Semi-blind channel estimation algorithms comparison for N inputs and n outputs systems.

estimated from the received data signal only [15], [16] (blind
estimation techniques). However, in such cases, the channel
may be identified within some ambiguities and errors which
can degrade the quality of the CSI estimates. This may have a
direct impact on the achieved throughput of the MIMO system
and the performance of detection algorithms.

To reach a compromise between spectral efficiency and
CSI estimate accuracy, an alternative solution is to adopt a
semi-blind channel estimation procedure [17]–[19]. The idea
is to use a limited number of training sequences in order to
get an initial channel estimate and then improve its quality
by considering data symbols estimates together with pilot
sequences.

This method has been well investigated in several papers
[11], [20]–[24]. In [20], the authors studied the channel
and signal identifiability conditions for an underdetermined
MIMO system. They proposed a channel estimation algorithm
expectation-maximization (EM) in the frequency domain with
a discrete random variable model for the unknown data. The
authors in [21] proposed two iterative EM-based channel
estimation algorithms. In [23], two semi-blind channel esti-
mation algorithms for single input multiple output (SIMO)
systems are studied with deterministic and Gaussian models.
The performance of these algorithms is investigated when
the frame length is infinitely large. In [24], a semi-blind
channel estimation technique is proposed using a two-level
optimization loop for joint channel estimation and data detec-
tion. In [11], the authors investigate two different semi-blind
channel estimation schemes based on the EM algorithm. The
first algorithm considers a Gaussian distribution of the data
symbols and the second one is derived by using additional
channel priors to improve the channel estimation quality.

In [25], we focused on detection and we proposed
simplicity-based algorithms, assuming perfect CSI knowledge.
We showed that the proposed simplicity-based algorithms
offer good performance in terms of detection. This is why
we decided to study their integration in an iterative semi-
blind channel estimation scheme. The principle is to use pilot
sequences to get an initial channel estimate that will be used
for the data detection based on FAS and FAS-SAC algorithms.
Data estimates are then provided to a ML-based channel
estimator to improve the CSI accuracy. We first empirically
validated the key principle in [26] in the coded case. In this
paper, we focus on the non-coded case and our purpose is
a theoretical analysis of performance and limitations of the
iterative scheme.

The strategy used to feed the CSI estimate from detection
output is crucial. In most papers, raw data detection output
(soft decisions) are used with the risk of error propagation,

yielding degradation of the CSI estimate. In this paper, we
propose to mitigate this weakness by providing hard decisions
(alphabet symbols prior) instead. Both strategies are investi-
gated with the mean squared error (MSE) as a performance
criterion. For the first strategy based on soft-decision outputs,
we compute the CRBs as lower bounds of the MSEs. For the
second strategy which introduces a non-linear function, the
CRB is not defined (due to the non-linearity) and thus, the
theoretical expression of the MSE is derived instead. The bit
error rate is also assessed.

Our contributions are: (i) the exploitation of FAS and FAS-
SAC detection outputs to gradually refine the CSI estimate
within an iterative channel estimation algorithm. We impose
a limited number of training sequences to obtain the initial
CSI estimate. We show that the proposed approach can also
be applied in underdetermined systems contrary to the state-
of-the art methods. (ii) an analytical expression of the CRBs
when the channel estimator is fed by raw detection outputs,
(iii) a second feeding strategy based on hard decisions on data
from detection outputs for further CSI estimate accuracy (iv)
and the theoretical computation of corresponding asymptotic
MSE.

The paper is organized as follows. Section II describes the
large-scale MIMO system model. In Section III, we present
an overview of channel estimation techniques and simplicity-
based detection algorithms. The Cramer-Rao bound is also
investigated for semi-blind channel estimation. In Section IV,
we propose semi-blind channel estimation algorithms based on
the output of FAS and FAS-SAC detection algorithms in the
uncoded case. CRBs and asymptotic MSEs are also calculated.
Finally, simulation results are presented in Section V and we
conclude the paper in Section VI.

Notations: Boldface upper case letters and boldface lower
case letters denote matrices and vectors, respectively. For the
transpose, transpose conjugate and conjugate operations we
use (.)T , (.)H and (.)∗, respectively. ⊗ is the Kronecker
product. Ik is the k × k identity matrix and 1k is the all-
one size-k vector. Let z ∈ Ck be a complex-valued vector
of size k. We denote by z ∈ R2k its real-valued transformed
vector which can be defined by z =

(
Re (z) Im (z)

)T
. Let

also H ∈ Cn×N a complex-valued matrix with size n × N ,
we denote by H ∈ R2n×2N its real-valued matrix version,

which is defined by H =

(
Re (H) − Im (H)
Im (H) Re (H)

)
. Given two

integer values k and i, δk,i = 1 if k = i and δk,i = 0 if k ̸= i

II. SYSTEM MODEL

Let us consider the uplink transmission in a communication
system with TDD protocol where the base station is equipped
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with n antennas and each of the N users has a single antenna.
We assume a block fading channel model, where the channel
coefficients are constant during a block of T symbols and
change to independent values at the next block transmission.
Each transmitted frame consists of Tp pilot vectors and Td data
vectors (T = Tp+Td). We also consider unit-variance channel
coefficients, which is equivalent either to neglect the large-
scale fading (the users are supposed to be located at similar
distances from the base station) or to assume perfect power
control at the user side. When N and n take high values, the
resulting model amounts to a large-scale MIMO system with
N inputs and n outputs.

Under the above assumptions, the received signal can be
modelled as:

Y = HX +Z. (1)

Y = (Yp,Yd) is the received signal matrix. Yp and Yd are the
n×Tp pilot received matrix and the n×Td data received matrix
respectively. H is the n × N complex channel matrix. X
stands for the transmitted signal matrix. This N×T complex-
valued matrix can be decomposed as X = (Xp,Xd). Xp and
Xd are the N × Tp pilot transmitted matrix and the N × Td

data transmitted matrix respectively.
We denote by x(t) the t-th column of X which is the

transmitted vector at time t. Its k-th element xk belongs
to B = {β1, β2, .., βM} such that its real and imaginary
parts take values on F = {α1, α2, .., αp} where p =

√
M .

Pilot symbols are assumed to be known at the BS. The rows
of the pilot transmitted matrix are assumed to be mutually
orthogonal, that is to say XpX

H
p = TpIN . Transmitted data

symbols are independent and identically distributed (i.i.d.):
E[x(t)x(t)H ] = IN for all x(t) with t = Tp, . . . , T . Note
that the channel use at time t, for t = 1, . . . , T , corresponds
to the received vector given by:

y(t) = Hx(t) + z(t). (2)

The Maximum Likelihood (ML) estimate of H based on both
training and data signals is given by

ĤML = arg max
H

log p(Y |H), (3)

where p(Y |H) is the probability of Y conditionally to H .

III. OVERVIEW ON CHANNEL ESTIMATION AND
SIMPLICITY-BASED DETECTION ALGORITHMS

A. Channel estimation

In this section, we present the pilot-based ML estimator
which only uses the training sequences as well as a full data-
based ML estimator which assumes perfect data estimation.
The last one can serve as a lower bound on the performance
of semi-blind estimation (which consists of a first step of
initialization of the channel estimate thanks to pilots followed
by estimate refinement with data decisions).

1) ML estimation based on training Pilot Sequences [10]:
The ML estimate of the channel matrix H based on pilot
sequences Xp is given by:

Ĥ training
ML =

1

Tp
YpX

H
p . (4)

To minimize the MSE subject to the transmit power, the
training sequences must be orthogonal, i.e XpX

H
p = TpIN .

The corresponding mean square error (MSE) is then computed
as

E
[∥∥∥H − Ĥ training

ML

∥∥∥2
F

]
=

nNσ2

Tp
(5)

The reliability of the channel estimate based on pilot sequences
highly depends on the number of orthogonal sequences.

2) ML estimation based on full data [10]: The full data-
based ML estimator assumes that all data symbols are known
at the receiver side and the performance of such estimator
serves as a lower bound of the performance of semi-blind
estimation. The channel estimate based on perfect knowledge
of pilot matrix Xp and data matrix Xd is denoted by Ĥ full

ML
and is computed as:

Ĥ full
ML = (Y XH)(XXH)−1. (6)

Its corresponding mean square error (MSE) equals

E
[∥∥∥H − Ĥ full

ML

∥∥∥2
F

]
= nσ2 tr

(
E
[(
XXH

)−1
])

. (7)

3) EM algorithm [5]: As data symbols are not known,
the ML problem cannot be analytically solved in practice. It
is necessary to use iterative algorithms that converge to the
solution of (3). Among them, the EM algorithm [5] updates
the channel estimate based on an old one in the following
manner:

Ĥi+1 = arg max
H

EPr(Xd|Y ,Ĥi)
[log Pr (Y ,Xd|H)] . (8)

As we can see, the algorithm involves an expectation step and
a maximization one. The maximization step can be simplified
and the updated estimate of the channel matrix can be written
as

Ĥi+1 =
1

Tp

(
YpX

H
p + Yd E

[
Xd|Y , Ĥi

]H)
(
IN +

1

Tp
E
[
XdX

H
d |Y , Ĥi

]H)−1

. (9)

To compute the estimate (9), the expectation step (E-step)
must be defined. In practice, the data symbols are discrete
random variables, which leads to complex E-step whose
complexity grows exponentially with N . To overcome this
problem, in [11], the authors propose to use an approximation
and they assume that the data symbols are Gaussian. Thus

E
[
Xd|Y , Ĥi

]H
and E

[
XdX

H
d |Y , Ĥi

]H
can be computed

from the conditional probability density function of circularly
symmetric Gaussian random vectors and we get the updated
estimate as follows:

Ĥi+1 =

YpX
H
p +

T∑
t=Tp+1

y(t) (x̂(t))
H


XpX

H
p +

T∑
t=Tp+1

(
x̂(t) (x̂(t))

H
+Σ

)−1

(10)
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where

x̂(t) =
(
ĤH

i Ĥi + σ2IN

)−1

ĤH
i y(t), (11)

and

Σ = σ2
(
ĤH

i Ĥi + σ2IN

)−1

(12)

4) Cramer-Rao bound of semi-blind channel estimation:
In this section, we derive the CRB [5], the lower bound of
covariance, for semi blind channel estimation. We assume that
deterministic model in which the data signal is modeled as an
unknown deterministic quantity.

The following theorem gives the CRB of any unbiased semi-
blind channel estimation based on least-squares algorithm.

Theorem III.1. The deterministic Cramer-Rao bound of the
covariance matrix of any unbiased semi-blind estimate of H
is given by:

CRB(H) = (Π−Πer)
−1

, (13)

where the matrix Π is defined as:

Π =
2

σ2
(XTX)⊗ I2N (14)

with X is the real-valued matrix version of X ,

Πer =

T∑
t=Tp+1

ΩT
t

(
HTH

)
Ωt, (15)

with H is the real-valued matrix version of H , Ωt = x(t)T⊗
H for t = Tp + 1, . . . , T and x(t) is the real-valued vector
version of x(t).

Proof: see Appendix.

Remark III.1. When all symbols are correctly detected,∑T
t=Tp+1 Ω

T
t

(
HTH

)
Ωt = 0 and CRB(H) = Π−1

which corresponds to the covariance matrix obtained
with the full-data ML, leading to a MSE equal to

tr(Π−1) = E
[∥∥∥H − Ĥ full

ML

∥∥∥2
F

]
as defined in (7).

B. Overview of simplicity-based detection algorithms

In this section, we provide a concise description of FAS
and FAS-SAC algorithms. The interested reader can refer to
[25] and [27] for further details. Both of them are compressed-
sensing algorithms that exploit the finite alphabet property.

They require a real-valued formulation of the problem which
is given hereinafter.

Let consider at time t, the following large-scale MIMO
system:

y = H x+ z, x ∈ BN (16)

The equivalent real-valued system can be then written as:

y = H x+ z, x ∈ F2N . (17)

Let us now describe the FAS and FAS-SAC algorithms.

1) FAS algorithm [25]: The vector x is recovered through
its real valued-transformation x. We briefly describe the detec-
tion technique previously proposed in [25]. For that purpose,
we introduce the following definition:

Definition III.1. Simplicity [28] A given vector x ∈
[α1, αp]

2N is called k-simple if it has exactly k entries
different from α1 and αp.

The simplicity property of F is exploited to define an
optimization problem whose complexity is independent of the
constellation size and is lower compared with [29], while per-
forming the same in terms of error rate. The vector x is simple
and its components are minored by α1 and majored by αp. It
can be decomposed as x = Bαr where Bα = I2N ⊗ [α1;αp]
and r ∈ [0, 1]4N . We used the previous decomposition to
define the simplicity-based optimization problem given by [25]

arg min
r

∥y −HBαr∥2 subject to (18)

B1r = 12N ,

r ≥ 0,

where B1 = I2N ⊗ 1T
2 . The FAS detection amounts to the

resolution of the optimization problem defined by (18), which
can be solved by an interior point method [30] among others.

2) FAS-SAC algorithm [27]: In the FAS detection method,
all sources are detected at once and some decisions may
be less reliable than others. In [27], the authors propose a
reliability measure based on the shadow area principle [31],
[32] that exploits the output statistics. The authors first define
the centers as the elements of F. The principle is to take
decision on components xk such that x̂k is close enough to
one center and cancel their contribution in the observation y
so as to proceed a novel detection iteration. To do so, they
propose to take into account the reliabilities of the output x̂k

based on the output distribution. Then, the algorithm takes
decisions on reliable x̂k, cancels their contribution from y
and proceeds another detection as shown in Fig. 1. Adjacent
to shadow areas, the high-reliability intervals are defined as
intervals of length 2η and are centered on the different symbols
of F. Let us denote by A the set of indices k such that
x̂k is considered as reliable. The decision on x̂k, k ∈ A

is taken as the nearest symbol value in F. We denote by
x̃A the resulting decision vector. The equivalent notations for
unreliable elements (falling in shadow areas) are respectively
A for the set of indexes and vN for its cardinality. The
algorithm is detailed in Algorithm 1.
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Fig. 1: FAS-SAC algorithm flowchart

Fig. 2: Equivalent frame structure used at the receiver side for N simultaneous transmissions of identically-formatted frames.

Algorithm 1 Shadow Area Constrained (SAC) - FAS detection

1: Input: H , y
2: r = arg min

r
∥y − HBαr∥2 subject to B1r =

12N and r ≥ 0.
3: Compute x̂ = Bα r.

4: Define A =

{
k | min

αi∈F
|x̂k − αi|≤ η, k ∈ {1, . . . , 2N}

}
,

vN = card(A).
5: Compute x̃A by x̃k = arg min

αi∈F

|x̂k − αi|, k ∈ A and

ỹ = y −HAx̃A.
6: r̃ = arg min

r̃
∥ỹ − HAB̃αr̃∥2 subject to B̃1r̃ =

1vN
and r̃ ≥ 0.

7: Compute x̃A = B̃αr̃.
8: Output: x̃.

The FAS-SAC detection algorithm can be implemented with
a large number of iterations as shown in [27]. In the remainder
of the paper, we consider the case with two iterations in order
to use the theoretical study demonstrated in [27]. To the best
of our knowledge, there doesn’t exist other large-scale MIMO
detection algorithms based on the simplicity principle. Among
the best iterative large-scale MIMO detection algorithms, we
can mention RTS and LAS algorithms which are outperformed
by FAS-SAC (see [27] for detailed comparison).

IV. SEMI-BLIND UPLINK CHANNEL ESTIMATION FOR
LARGE-SCALE MIMO SYSTEMS

In this section, we develop a joint semi-blind channel
estimation and detection schemes based on the simplicity-
based algorithms (FAS) and (FAS-SAC) described above.

A. Proposed Semi-blind uplink channel estimation algorithms

We consider N users transmitting simultaneously
identically-formatted frames. The channel is assumed to
be constant over one frame duration. At the receiver side, the
N transmissions can be modelled as a single transmission
from N inputs. The equivalent frame structure is depicted
in Fig. 2. It consists of a pilot block followed by K data
blocks. The pilot block is the vertical stacking of N length-N
training sequences (one per user). Each data block is the
vertical stacking of N length-N data sequences (one per
user). The system model introduced in Section II applies with
Tp = N and Td = KN .
An iterative process consisting of the cascade of CSI-
estimation and data detection is carried out. Data blocks are
detected using either FAS or FAS-SAC detection algorithm.
An initial CSI estimate is obtained by a pilot-based channel
estimation. The detected data blocks are then used to
gradually refine the channel estimates thanks to a least-
squares algorithm. The steps of the iterative process are
detailed hereinafter.

1) Initial channel estimate during pilot phase: Let xu
p

denote the transmitted pilot symbol vector from user u. Let
Xp = (x1

p,x
2
p, . . . ,x

N
p ) denote the N×N pilot matrix formed

by the pilot symbol vectors transmitted by all users in the pilot
transmission phase. The received signal matrix at BS, Yp, is
given by:

Yp = HXp +Zp, (19)
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Fig. 3: Channel estimation algorithm based on detection FAS/FAS-SAC outputs

where Zp is the noise matrix. Choosing orthogonal pilot
sequences, we get Ĥ0, the first estimate, as:

Ĥ0 =
1

Tp
YpX

H
p (20)

= H +
1

Tp
ZpX

H
p

This choice is adopted in order to avoid matrix inversion at
first iteration and then reducing computation complexity.

2) Data detection using initial channel estimate: During
data transmission phase, the received signal matrix at BS, Yd,
is given by:

Yd = HXd +Zd, (21)

where Xd is the concatenation of different data blocks. The
received vector for the channel use at time t, for t = Tp +
1, . . . , T is

y(t) = Hx(t) + z(t), (22)

The initial channel estimate Ĥ0 obtained from (20) is used to
detect the transmitted data vectors using FAS and FAS-SAC
algorithms described in previous sections to get an estimate
for the transmitted data matrix Xd denoted by X̂d.
The initial CSI error Ĥ0−H is used to calculate the statistics
needed to study the performance of the proposed schemes in
the uncoded cases and to interface the proposed detectors with
FEC decoder and channel estimation block in the coded case.
We then get, at channel use t, y(t)−Ĥ0x(t), the updated noise
vector at first iteration with zero mean and variance (1+ N

Tp
)σ2.

B. Channel estimation based on detection algorithms outputs

1) Channel estimation refinement based on FAS/FAS-SAC
soft-decision output: Let define X̂ = (x̂(Tp + 1), . . . , x̂(T ));
where x̂(t), for t = Tp + 1, ..., T , is the detected complex-
valued FAS/FAS-SAC soft-decision output at time t based on
the channel estimate at i-th iteration. The iterative receiver is
illustrated in Fig. 3. The channel estimate at the (i + 1)-th
iteration is denoted by ĤSD

i+1 and defined as

ĤSD
i+1 =

(
YpX

H
p + YdX̂

H
)(

XpX
H
p + X̂X̂H

)−1

. (23)

In order to compute the CRB of the proposed channel
estimation algorithm based on FAS detection, let us remember
that at time t, the components of the real-valued vector x̂(t)
provided by the FAS algorithm can be classified into two
sets [25]. The first set is the set of reliable elements which
are exactly equal to the transmitted symbols. This set was

referred to as Λt. In case of QPSK, its cardinality follows the
binomial distribution with parameters 2N and 1

2 . The second
set referred to as Λ̄t contains the remaining noisy components.
Its cardinality follows the same distribution as Λt.

Given t = Tp + 1, . . . , T , let GFAS
t stand for the matrix

defined from H by annulling the columns whose indices are
in Λt and the matrix ΩFAS

t as ΩFAS
t = x(t)T ⊗GFAS

t .

Let us also introduce CFAS
t =

(
HT

Λ̄t
H Λ̄t

)−1

. We define the

matrix CFAS
t such that CFAS

t

(
Λ̄t(i), Λ̄t(j)

)
= CFAS

t (i, j) for
(i, j) ∈ {1, . . . , |Λ̄t|}2 and the other entries are equal to zero.

As mentioned in Section III-B2, the FAS-SAC algorithm
is itself iterative (to make the difference with the iterations
involved in the cascade of estimation and detection, we will
refer to as inner iterations for the FAS-SAC). Analytical
expressions of defining and performance parameters of FAS-
SAC are available up to two inner iterations. This is why we
fix to two the inner iteration number in order to determine
the CRB of the channel estimation algorithm. As detailed
in Section III-B2, the components of the FAS-SAC output
after one inner iteration can be split into two subsets. The set
At contains the components presumed to be reliable by the
algorithm. It can be itself divided into two subsets: the sets of
correct decisions and erroneous decisions denoted by (Ac)t
and (Ae)t respectively and such that At = (Ac)t ∪ (Ae)t.
The complementary set Āt contains the symbols that are re-
estimated in the second iteration. The updated noise vector in
the second iteration is z̃(t) with variance σ2

z̃(η) calculated in
[27].

Given t = Tp + 1, . . . , T , let GFSAC
t be the matrix defined

from H by annulling the entries of columns whose indices
are in At and let the matrix ΩFSAC

t = x(t)T ⊗GFSAC
t .

Let us also introduce CFSAC
t =

(
HT

Āt
HĀt

)−1

. We

define the matrix CFSAC
t such that CFSAC

t

(
Āt(i), Āt(j)

)
=

CFSAC
t (i, j) for (i, j) ∈ {1, . . . , |Āt|}2 and the other entries

are equal to zero, for t = Tp + 1, . . . , T . Then the CRB of
both schemes is given by the following theorem.

Theorem IV.1. The deterministic CRB of the channel esti-
mation based on FAS detection algorithm with soft decision
outputs is defined as

CRB(H) =
(
Π−ΠFAS

er

)−1
, (24)
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where

ΠFAS
er =

2

σ2

T∑
t=Tp+1

(ΩFAS
t )TCFAS

t (ΩFAS
t ).

Similarly, the deterministic CRB of the channel estimation
based on FAS-SAC detection algorithm is defined as

CRB(H) =
(
Π−ΠFSAC

er

)−1
, (25)

where

ΠFSAC
er =

2

σ2
z̃(η)

T∑
t=Tp+1

(ΩFSAC
t )TCFSAC

t (ΩFSAC
t ).

Proof: see Appendix.
2) Channel estimation refinement based on FAS/FAS-SAC

hard decision output: Let X̃ = (x̃(Tp + 1), . . . , x̃(T )), where
x̃(t) is the hard decision of the detected complex-valued
FAS/FAS-SAC output at time t based on the channel estimate
at the i-th iteration. The channel estimate at the (i + 1)-th
iteration is denoted by ĤHD

i+1 and is computed as

ĤHD
i+1 =

(
YpX

H
p + YdX̃

H
)(

XpX
H
p + X̃X̃H

)−1

. (26)

The following theorem gives the asymptotic MSE of the
proposed channel estimation schemes based on hard decisions
of proposed detection algorithm outputs. Let us consider 4-
QAM complex-valued symbols yielding BPSK real-valued
symbols in the real-equivalent system. The estimated data ma-
trix X̃ based on hard decisions simply writes X̃ = X +∆X

where ∆X is the error matrix with entries in the set {−2, 0, 2}.

Theorem IV.2. Let us consider QPSK complex-valued alpha-
bet. The asymptotic MSE of the channel estimation combined
with hard decision outputs detection equals:

MSE = E
[∥∥∥H − Ĥ

∥∥∥2
F

]
(27)

=
2Nσ2

T
+

σ2

T 2
tr
(
E
[
∆X

TXHTHXT∆X

])
Proof: see Appendix.

V. SIMULATION RESULTS AND COMPLEXITY ANALYSIS

A. Simulation results

1) Comparison with EM algorithm: In Fig. 4, we compare
the MSE of the proposed iterative channel estimation algo-
rithm based on soft decision FAS-output under one iteration
given in (23) to the ML estimators and the EM algorithm with
two iterations described in Section III for an overdetermined
system with N = 8 and n = 64. We show that the same
performance at the second iteration can be achieved by the
proposed algorithm.
In Fig. 5, we consider a determined system with N = n = 64.
It is shown that the EM algorithm exhibits no improvement
compared to ML training-based estimation in such configura-
tion. However, the proposed algorithm based on soft decision
FAS output presents a gain over the ML training-based one
beyond SNR=11dB. This gain is of about 2dB at 10−3 MSE.

2 4 6 8 10 12 14 16 18

SNR(dB)
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-4

10
-3

10
-2

10
-1

M
S

E

ML Full Data

ML Training

Iter. EM estimation/detection, # iter=2

Iter. estimation/FAS-detection, # iter=2

Fig. 4: MSE versus SNR with uncoded QPSK, N = 8, n = 64,
Tp = 16 and T = 512.

5 10 15 20

SNR(dB)
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-3
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-2
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-1

M
S

E

ML Training

ML Full Data

Iter. estimation/FAS-detection(soft), # iter=2

Iter. EM estimation/detection, # iter=2

Iter. estimation/FAS-SAC-detection(soft), # iter=2

Iter. estimation/FAS-SAC-detection(hard), # iter=2

Iter. estimation/FAS-detection(hard), # iter=2

Fig. 5: MSE versus SNR with uncoded QPSK, n = N = 64,
Tp = 64 and T = 1280.

The second proposed algorithm based on soft decision FAS-
SAC output outperforms EM algorithm and soft decision
FAS-output algorithm over the whole SNR range. It achieves
the same MSE as the full data based estimation beyond
SNR=19dB. Let us now compare the two proposed feeding
strategies based on raw detection outputs (soft-decisions) on
one hand and on hard decisions on the other hand. In Fig.
5, we show that the second strategy based on hard decisions
outperforms the first one with a gain of about 5dB for FAS
detection and 2.7dB for FAS-SAC detection algorithm at 10−3

MSE.
2) Comparison with theoretical bounds: Let us first study

the feeding strategy based on soft decisions. We consider
the proposed scheme with FAS detection with N = 8 and
n = 64 (overdetermined system) in Fig. 6 and with FAS-SAC
detection and n = 64 and N = 8 (determined system) in
Fig. 7. In both cases, we observe that the proposed algorithm
performs close to its CRB.

As for the second feeding strategy based on hard decisions,
considering both FAS and FAS-SAC algorithm with N = n =
64 in Fig. 8, we observe that the empirical MSE is the same
as the asymptotic MSE derived in (27) and converges towards
the lower bound (full data-based ML) in both cases, which
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ML Full Data

Iter. estimation/FAS-detection, # iter=1

Deterministic CRB

Fig. 6: MSE versus SNR with uncoded QPSK, n = 64, N = 8,
Tp = 16 and T = 512 (overdetermined system, soft decision
FAS output-based scheme).

5 10 15 20

SNR(dB)

10-5

10-4

10-3

10-2

10-1

M
S

E

ML Training

ML Full Data

Iter. estimation/FAS-SAC-detection, # iter=1
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Fig. 7: MSE versus SNR with uncoded QPSK, n = N = 64,
Tp = 64 and T = 1280 (determined system, soft decision
FAS-SAC output-based scheme).
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Asymptotic MSE (FAS-detection), # iter=1

Asymptotic MSE (FAS-SAC-detection), # iter=1

Fig. 8: MSE versus SNR with uncoded QPSK, n = N = 64,
Tp = 64 and T = 1280 (hard decision FAS and FAS-SAC
outputs-based schemes).

assesses the validity of the theoretical analysis.
3) Impact of iterations on the estimation accuracy: We

consider the second feeding strategy based on hard decisions
and both FAS and FAS-SAC detection and we measure the

1 2 3 4 5 6

Number of iterations
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-3

10
-2

M
S

E

Iter. estimation/FAS-SAC-detection

ML Full Data

ML Training

ter. estimation/FAS-detection

Fig. 9: MSE versus number of iterations with uncoded QPSK,
N = 8, n = 64, Tp = 16 and T = 512, SNR = 8 dB.
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Iter. estimation/FAS-SAC-detection

ML Full Data

ML Training

Iter. estimation/FAS-detection

Fig. 10: MSE versus number of iterations with uncoded QPSK,
n = N = 64, Tp = 64 and T = 1280 - SNR = 8 dB.

MSE evolution as a function of the iterations with a SNR
value equal to 8 dB in Fig. 9 and equal to 13 dB in Fig.
10. For the lowest SNR value, the MSE has converged to a
steady state from fourth iteration with FAS, while it keeps
on decreasing until the sixth iteration with FAS-SAC. For the
highest SNR value, the convergence is achieved after fewer
iterations in both cases and the lower bound is even reached
with FAS-SAC.

4) Superposition of MSE and BER: We consider the second
feeding strategy based on hard decisions. Our purpose is to
investigate the impact of inner detection iteration number on
the MSE and BER achieved by the proposed scheme in Fig.
11 and Fig. 12 with N = n = 64. It can be seen that the
MSE performance can be improved for an increased number
of iterations between channel estimation and detection for both
schemes. It can also be seen that with just two iterations of
the channel estimation/detection procedure, we can get a BER
close to perfect channel detection BER. We show that the
FAS and FAS-SAC based-iterative schemes achieve 10−3 BER
within 0.5dB and 0.9dB of the perfect channel knowledge
respectively.

In Fig. 13 and Fig. 14, we show that the proposed channel
estimation/detection schemes are efficient in underdetermined
systems where N = 64 and n = 50. It can be confirmed
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Computational cost
ML training O(nNTp)
ML full data O(nNT )

EM O(max((Td +NQ)n2), ((T +N)nNQ))
Proposed algorithms (FAS-based) O(TdQN3)

Proposed algorithms (FAS-SAC-based) O(Td(2− Zη)QN3)

TABLE II: Computational cost with the interior point (iteration number: Q).
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Iter. estimation/detection, # iter=1
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Fig. 11: MSE versus SNR (hard decision FAS and FAS-SAC
output-based schemes), BER versus SNR (hard decision FAS
output-based schemes) with uncoded QPSK, n = N = 64,
Tp = 64 and T = 1280.

as for the determined system that the MSE performance can
be improved increasing the number of iterations. It is the
same for the BER where we get a gain of about 2.7dB and
2.8dB over the initial channel estimation detection for FAS and
FAS-SAC hard decisions-based channel estimation/detection
schemes respectively at the second iteration.

B. Complexity analysis

We now compare the computational complexity of pro-
posed semi-blind channel estimation with the ML estimators
and the EM algorithms detailed in Section III. Calculation
of ML training-based channel estimation consists of ma-
trix multiplications with dominant factor of O(nNTp) and
a matrix inversion with complexity O(N3). Therefore, the
whole complexity order is O(nNTp). Similarly we can show
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Iter. estimation/FAS-SAC-detection, # iter=1

Iter. estimation/FAS-SAC-detection, # iter=2

ML Full Data
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Iter. estimation/detection, # iter=1

Iter. estimation/detection, # iter=2

Fig. 12: MSE versus SNR (hard decision FAS and FAS-SAC
output-based schemes), BER versus SNR (hard decision FAS-
SAC output-based scheme) with uncoded QPSK, n = N = 64,
Tp = 64 and T = 1280.

that the complexity of full data based channel estimation
is about O(nNT ). Let denote Q the number of iterations
taken into account in the iterative algorithms. We get that the
EM channel estimation algorithm has a complexity of order
O(max((Td + NQ)n2), ((T + N)nNQ)). The complexity
orders of proposed algorithms based on FAS soft decision
output and FAS hard decision output are the same and equal
O(TdQN3). The channel estimation based on FAS SAC with
both soft and hard decisions outputs represents a complexity
order of O(Td(2 − Zη)QN3). Finally, it can be mentioned
that all the proposed iterative algorithms represent the same
order of complexity as EM algorithm. The computational
complexities of the different algorithms are reported in Table
II.

VI. CONCLUSION

In this paper we have addressed the problem of imperfect
CSI and we have proposed semi-blind channel estimation algo-
rithms in large MIMO systems with finite alphabets assuming
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Fig. 13: MSE versus SNR (hard decision FAS and FAS-SAC
output-based schemes), BER versus SNR (hard decision FAS
output-based scheme) with uncoded QPSK, n = 64, N = 50,
Tp = 64 and T = 1280.

limited pilot sequence length. We have proposed channel
estimation schemes based on soft and hard decisions outputs
of FAS and FAS-SAC algorithms. We have shown that taking
into account a number of pilot sequences equal to the number
of users is sufficient. Theoretical studies for both algorithms
are established and we have determined the CRBs when soft
decisions are considered and the asymptotic MSEs when hard
decisions are used. Simulation results showed their validity
and the efficiency of the proposed schemes which perform
close to the ML full-data lower bound, with a superiority of
the ones based on hard decisions. The whole work is done
assuming non-selective channels. Future works will focus on
the spectral efficiency by optimizing pilot sequences number
to avoid pilot contamination and how the proposed schemes
can be extended to frequency-selective channels and to higher
order modulation.

APPENDIX

Proof of Theorem III.1: The log likelihood function of
the received signal is given by:

L = const−
T∑

t=1

1

σ2

∥∥y(t)−H x(t)
∥∥2
2

(28)

The CRB of both channel coefficients and unknown data
symbols is computed as:

CRB(Xd,H) =
(
E[IIT ]

)−1

, (29)
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Fig. 14: MSE versus SNR (hard decision FAS and FAS-SAC
output-based schemes), BER versus SNR (hard decision FAS-
SAC output-based scheme) with uncoded QPSK, n = 64, N =
50, Tp = 64 and T = 1280.

where

I =
∂L

∂u
(30)

with u =
(
xT (Tp + 1), ...,xT (T ),hT

1 , ...,h
T
2N

)
Following similar steps as in the proof of [33], for t =

Tp + 1, . . . , T and k = 1, . . . , 2N , we can show that

∂L

∂x(t)
=

2

σ2
HTz(t) (31)

∂L

∂hk

=
2

σ2

T∑
t=1

z(t)xk(t) (32)

where hk is the k-th column of the matrix H and z(t) is the
noise vector at time t.
We get then

E

[
∂L

∂x(q)

(
∂L

∂x(p)

)T
]
=

2

σ2
HTH δ(q − p) (33)

E

[
∂L

∂x(q)

(
∂L

∂hk

)T
]
=

2

σ2
HTxk(q) (34)

E

[
∂L

∂hk

(
∂L

∂hi

)T
]
=

2

σ2

T∑
t=1

xk(t)xi(t) (35)
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Substituting (33), (34) and (35) in (29), we get

CRB(Xd,H)−1 =


2HTH

σ2 . . . 0 Ω(Tp+1)

...
. . .

...
...

0 . . . 2HTH
σ2 Ω(T )

ΩT
(Tp+1) . . . ΩT

(T ) Π

 (36)

The CRB of the channel matrix H

CRB(H) =

Π−
T∑

t=Tp+1

ΩT
t

(
HTH

)
Ωt

−1

(37)

Proof of Theorem IV.1:
Following similar steps as in the proof of [11], [33], for

t = Tp + 1, . . . , T and k = 1, . . . , 2N applied to the FAS
algorithm, we get

• for k ∈ Λ̄t

∂L

∂xk(t)
=

2

σ2
hT
k z(t) (38)

• for k ∈ Λt

∂L

∂xk(t)
= 0 (39)

• for k ∈ {1, . . . , 2N}

∂L

∂hk

=
2

σ2

T∑
t=1

z(t)xk(t) (40)

We then get
• for (k′, k′′) ∈ (Λ̄t′ × Λ̄t′′)

E

[
∂L

∂xk′(t′)

(
∂L

∂xk′′(t′′)

)T
]
=

2

σ2
hT
k′hk′′δt′,t′′ (41)

• for (k′, k′′) ∈ (Λt′ × Λt′′)

E

[
∂L

∂xk′(t′)

(
∂L

∂xk′′(t′′)

)T
]
= 0 (42)

so

E

[
∂L

∂x(t′)

(
∂L

∂x(t′′)

)T
]
=

2

σ2

(
GFAS

t′
)T

GFAS
t′ δt′,t′′ (43)

• for k ∈ Λ̄t

E

[
∂L

∂xk(t
′)

(
∂L

∂hk

)T
]
=

2

σ2
hT
k xk(t

′) (44)

• for k ∈ Λt

E

[
∂L

∂xk(t
′)

(
∂L

∂hk

)T
]
= 0 (45)

so

E

[
∂L

∂x(t′)

(
∂L

∂hk

)T
]
=

2

σ2

(
GFAS

t′
)T

xk(t
′) (46)

• for k ∈ {1, . . . , 2N}

E

[
∂L

∂hk

(
∂L

∂hi

)T
]
=

2

σ2

T∑
t=1

xk(t)xi(t) (47)

Similarly, considering the different sets defined above, we get
with the FAS-SAC algorithm the results below:

• for k ∈ Ā

∂L

∂xk(t)
=

2

σ2
hT
k z(t) (48)

• for k ∈ A

∂L

∂xk(t)
= 0 (49)

• for k ∈ {1, . . . , 2N}/Ae

∂L

∂hk

=
2

σ2
z̃(η)

T∑
t=1

z̃(t)xk(t) (50)

• for k ∈ Ae

∂L

∂hk

=
2

σ2
z̃(η)

T∑
t=1

z̃(t)(xk(t) + δxk(t)) (51)

Note that δxk(t) takes values in {−2, 2}.
We then obtain

• for (k′, k′′) ∈ (Āt′ × Āt′′)

E

[
∂L

∂xk′(t′)

(
∂L

∂xk′′(t′′)

)T
]
=

2

σ2
hT
k′hk′′ δt′,t′′ (52)

• for (k′, k′′) ∈ (At′ ×At′′)

E

[
∂L

∂xk′(t′)

(
∂L

∂xk′′(t′′)

)T
]
= 0 (53)

• for k ∈ Āt

E

[
∂L

∂xk(t
′)

(
∂L

∂hk

)T
]
=

2

σ2
hT
k xk(t

′) (54)

• for k ∈ At

E

[
∂L

∂xk(t
′)

(
∂L

∂hk

)T
]
= 0 (55)

• for (k, i) ∈ (Āe)
2

E

[
∂L

∂hk

(
∂L

∂hi

)T
]
=

2

σ2
z̃(η)

T∑
t=1

xk(t)xi(t) (56)

• for (k, i) ∈ (Āe ×Ae)

E

[
∂L

∂hk

(
∂L

∂hi

)T
]
=

2

σ2
z̃(η)

T∑
t=1

xk(t)ui(t)

(57)

with ui(t) = xi(t) + δxi(t).
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• for (k, i) ∈ (Ae × Āe)

E

[
∂L

∂hk

(
∂L

∂hi

)T
]
=

2

σ2
z̃(η)

T∑
t=1

uk(t)xi(t)

(58)

with uk(t) = xk(t) + δxk(t).
• for (k, i) ∈ (Ae)

2

E

[
∂L

∂hk

(
∂L

∂hi

)T
]
=

2

σ2
z̃(η)

T∑
t=1

uk(t)ui(t) (59)

Following the last steps of [Proof of Theorem III.1], we
get the final theorem result.

Proof of Theorem IV.2: The real-valued matrix version
of the channel estimate can be written as follows:

Ĥ
HD

=
(
Y X̃

T
)(

X̃X̃
T
)−1

=
1

T
(HX +Z)(X +∆X)T

=
1

T
(HXXT +HX∆X

T +ZXT +Z∆X
T )

(60)

Assuming that the frame size is very large (i.e 2N << T ), the
covariance matrix of the frame block can be approximated by
XXT ≈ TI2N . The real-valued matrix version of the channel
error can then be written as:

∆H = Ĥ
HD

−H

=
1

T
(ZXT +Z∆X

T +HX∆X
T ) (61)

Assuming that the channel noise is independent of the trans-
mitted symbols and symbols errors we get:

E [∆H] =
1

T
(E [H]E

[
X∆X

T
]
) (62)

As the channel is a zero-mean random matrix, the estimation
bias is always zero.
The MSE of the channel estimation reads:

E
[∥∥∥H − ĤHD

∥∥∥2
F

]
= E

[
tr(H − Ĥ

HD
)(H − Ĥ

HD
)T

]
=

1

T 2
E
[
tr
(
EET

)]
(63)

where E = ZXT +Z∆X
T +HX∆X

T .
Let us now calculate the error terms of (63). The first error
term equals:

E
[
tr

((
ZXT

)(
ZXT

)T
)]

= Tσ2 tr(I2N )

= 2NTσ2 (64)

The second term is calculated as:

E
[
tr

((
Z∆X

T
) (

ZXT
)T

)]
= σ2tr

(
E
[
(∆X)TX

])
= −4σ2NF, (65)

where F is the number of errors in the detected symbols block
X̂ .

The third term which considers the noise, the data block and
the hard decisions errors can be calculated as follows:

E
[
tr
((

ZXT
) (

Z∆X
T
)T)]

= σ2tr
(
E
[
XT (∆X)

])
= −4σ2NF (66)

Another term is computed as:

E
[
tr
((

Z∆X
T
) (

Z∆X
T
)T)]

= σ2tr
(
E
[
∆X

T∆X

])
= 8σ2NF (67)

We also get,

tr
(
E
[
∆X

TX
]
+ E

[
XT (∆X)

]
+ E

[
∆X

T∆X

])
= 0. (68)

Last term in (63) is computed as:

E
[
tr
((

HX∆X
T
) (

HX∆X
T
)T)]

(69)

= σ2tr
(
E
[
∆X

TXHTHXT∆X

])
.

We finally get (27).
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