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Multi-page Menu Recommendation in Cascade Model with
Externalities

Richa Dhingra, Hansraj Satyam Verma, Alexandre Reiffers-Masson and Veeraruna Kavitha

Abstract—In this paper, we consider a variant of the cascade
model of customer behavior, where the customer browses
through a multi-page menu, scanning each page from top to the
bottom predominantly. Each page is assigned items belonging
to a specific class out of a set of such classes. He/she adopts
the first most attractive content, which generates some revenue.
We aim at maximizing the total revenue by finding an optimal
index-based policy for ranking the content when the customer
preferences and patience levels are known. When we have no
prior information about the customer, we design the Online
Greedy Algorithm (OGA) which we prove to be asymptotically
converging to the optimal solution with probability one. We also
provide high probability finite-time convergence bounds for the
same.

Keywords—recommender system, dynamic programming, on-
line learning, perturbation analysis, cascade model, stochastic
system, sponsored search

I. INTRODUCTION

A Recommender System (RS) is an information filtering
system, designed to predict or influence the behavior of the
user based on the digital footprint left by him/her [9]. These
systems have diverse applications, e.g., in Sponsored Search
advertisement, product-recommenders for online-purchase
portals etc. A recommendation list owner is interested in
maximizing the click-through rate, the probability that one
of the items will be clicked. The larger the click-through
rate, the larger the expected revenue. Alternatively one might
have different levels of preferences for click-through rates
of different items.

There have been models [3],[10] based on the assump-
tions that the click-through rate of item i depends solely on
the attraction probability of the item i and the location of the
slot which it is assigned. Such models overlook the effects
of other items shown on the same page. An item with lower
revenue generation placed more prominently may detract the
customer from another item which generates higher revenue
but is assigned a lower position on the page. Moreover,
an expensive item placed at a higher spot may have lower
attraction probability for a customer as compared to a less
expensive item assigned a lower spot. Thus, different items
on a page appear to alter each others click-through rates.

In this paper, we aim at maximizing the revenue
generated by a multi-page menu by taking into account
this externality effect items have on each other. This menu
consists of different classes of items on each page. The
problem can be viewed as an allocation problem of the
classes to the pages and of the items to the slots within
those pages.

Our model: We focus on a model which recommends

items based on user rating when certain groups/classes
of products are present. We aim at finding the optimal
ordering for a menu consisting of these classes of items
using the click-log data of the customer. The menu consists
of several pages, each page containing a certain class of
items. The customer is interested in consuming/adopting
one of the item on this menu. He scans each page from the
top to bottom predominantly, however, can follow a random
browsing pattern too. We term the customer’s browsing
pattern as general browsing. He can leave the menu
mid-way if he is not able to find something of his interest
or if he starts to get disinterested while browsing the list.
The menu is such that items and the pages are displayed in
a specific order and this order will impact the decision of
a customer to adopt a given item. We model the behavior
of the customers using parametric Markov chain. Since the
click-data has an inherent position-bias effect, therefore the
customer’s attraction towards the list of items is not just
dependent on the list of items shortlisted but also on the
order in which that list is presented. This is due to the
decay observed in the click through rate, with increase in
rank.[1], [8] Additionally, we are finding a recommendation
for the customer that helps the recommendation owner (or
menu designer) maximize the utility he seeks through the
decisions taken by the customer who is presented with it.
This helps in offering services that meet the needs of both
the players.

Organization and Main Results: The organization
of the paper is as follows: In section II, we describe the
model and the utility that the owner of the recommendation
list is interested in. We also define Look Only Ahead
browsing (LoA), i.e., where the user scans the items from
top to down, in the context of our model. We provide a
perturbation result which shows that there exists a subset
of cases with general browsing where the optimal ordering
policy for LoA browsing is optimal. In section III, we
derive the optimal ranking for LoA browsing when the
parameters of the model are known. In section IV, we
provide an online learning algorithm (called OGA) which
converges to the optimal policy by observing the partial
feedback of the customer. The convergence is proved w.p. 1
and we also derive a high probability bound for finite time
convergence. In section V, we provide extensive numerical
experiments to illustrate the optimal ranking given in this
paper. We also include plots illustrating the converging
behaviour of OGA to the optimal ordering policy. Finally
in section VI, we briefly conclude our work.

Related Work: The model used in this paper is a variation
of the simple Cascade model of customer behaviour. In a
simple Cascade model, the user is presented with a list of



K items ordered in a specific order. The user browses the
menu starting from the first item to the last item in a top
to down manner and selects the first attractive item and
quits the session thereafter [6]. The authors in [5] focus on
a variation of this model called the Slated cascade model.
They provide an optimal ordering policy by considering
externality effect. However, they considered a special case
of user browsing pattern where every user scans any page
from top to bottom (until stopping the scan).

We relax this restriction in our work. The user will
predominantly scan from top to bottom, however, he can
browse items randomly in any order on a given page. We
also consider the existence of classes of items to be ranked
on different pages. As a result, the model considered in this
paper differs from the Slated Cascade model in [5]. In fact,
the results of this paper can be considered as an extension
of their work to a more general environment. Also, in this
paper, we have suggested an algorithm that not only provides
an ordering scheme for items but also helps in learning the
key parameters that drive the behavior of the users (attraction
probabilities and impatience level).

There are some timeline based models that study the
influence on a customer’s choices by other customers present
in the social network as highlighted in [4], [7], [2]. There
are other models like [1] that attempt to explain the position-
bias effect present in the customer click logs and ways to
model it. This is especially seen in the cascade models that
tend to impact the customer’s decisions.

II. MENU OF MENUS WITH GENERAL BROWSING

Consider a menu containing different pages. On each
page, items belonging to one specific class are displayed.
Let C :“ t1, ¨ ¨ ¨ , Cu represent these classes. The class c P C
contain Ic number of items, given by Ic “ t1, ¨ ¨ ¨ , Icu. The
items are categorised into different classes based on their
properties (e.g., physical properties like color, shape).

Menu Ordering Policy: Let Π :“ pP0, P1, P2, ¨ ¨ ¨PCq
denote the set of permutation matrices (menu ordering
policy) For a class c P C, Pc (with c ě 1) represents the
permutation which characterizes the ordering of items of
class c on a page. P0 corresponds to inter-page orderings,
and assigns the classes of items to the pages. For simpler
notations, we use index 0 to represent quantities related
to inter-page entities. Let ∆P be the set of all tuples of
permutation matrices.

Given a policy Π, we introduce some notations (charac-
terized by this policy) which we will be using in this paper.
P0 explicitly denotes the permutation matrix rrp̃cpss1ďp,cďC
used for assigning the classes of items to pages. Here,
p̃cp “ 1 if class c has been assigned to page p and is equal
to zero otherwise. s̃ “ rs̃ps1ďpďC denotes the corresponding
vector notation of the ordering of the menus where s̃p P C
represents the class displayed on page p. Also, let vector
r̃ “ rr̃cs1ďcďC denote the mappings of the classes to the
respective menu page i.e. the cth component of r̃ denotes
the page that class c P C has been assigned to. For a fixed
permutation Π, let sp,k be the item from class s̃p to be placed
at position k within the page p. Let rc,i denote the position

of item i within the page p :“ r̃c from class c. Finally, for
any probability value q we will write 1´ q as q̄.

General Browsing: The customer starts the browsing
session with the content at position 1 on page 1. If the user
gets attracted to an item, he/she buys it and a revenue is
generated. βc,i denotes the attraction probability of an item
i belonging to class c and wc,i denotes the revenue generated
when it is bought. Upon observing the item at position k on
page p, the customer takes a sequence of 3 decisions:
(i) With probability αp,k :“ βs̃p,sp,k , the customer will buy
the item and generate revenue ωp,k :“ ws̃p,sp,k . When doing
so, the customer is automatically logged out of the session.
(ii) If k ă Is̃p and the customer does not buy item at position
k, then, with probability γp, he stops scanning the menu and
exits the process.
(iii) If the customer decides to continue scanning (w.p. γp “
1´ γp), then the customer predominantly scans the item at
the next level, but has small probability of going back and
forth on the list displayed in any page. Let mp

k,l be the
probability that the customer scans item at l-th level after
scanning the item at k-th level on p-th page.

To simplify the notations and analysis 1, we make the fol-
lowing assumptions with respect to the browsing behaviour:
‚ We assume that a customer can only browse randomly
within a page, but cannot go back and forth across the pages.
‚ We also assume that mp

Is̃p ,j
“ 0 for all j ď Is̃p . i.e. if

a customer reaches the end of any page without buying an
item, then with probability γ0 he will quit the menu and
with probability γ̄0 “ 1´ γ0 he will directly go to the next
page. The customer will not go to some other level within
the same page once he is in the last level. This assumption
also implies that if the customer reaches the last item of the
last page of the menu (pp, kq “ pC, Is̃C q) without purchasing
any item, then he automatically quits the session.
‚ We fix mp

k,k “ 0 for any k “ 1 . . . Is̃p . It is a reasonable
assumption that if a customer does not buy an item on the
current level and does not intend to quit either, then he will
not come back to the current level in the immediate next-
step.
Let Mp

εp “ Mp
εppΠq :“ rrmp

k,lss1ďk,lďIs̃p represent the
Is̃p ˆ Is̃p matrix corresponding to the class s̃p displayed
on page p. With a high probability, the user scans the next
item. i.e., we assume that mp

k,k`1 “ 1´εpk, while the rest of
the probabilities

ř

k‰l,l`1m
p
k,l “ εpk. Let ε :“ maxp,k ε

p
k.

Fig. 1: Example, 2-Page menu with 2 classes (5 & 4 items), ᾱp,k-
probability of not buying item at level k of page p, after inspection.

When a menu is designed using the ordering pol-

1One can easily consider back and forth behaviour across the pages, and
take mpIs̃p ,j

pj ď Is̃p q to be non-zero. An analysis equivalent to the one
given in this paper will hold.



icy Π, the overall browsing process including the quit-
ting possibilities can be summarized through the matrix
MεpΠq “ rrm̃p,p1

k,k1ss1ďp,p1ďC,1ďkďIs̃p ,1ďk1ďIs̃1p
of dimension

I ˆ I , where I :“
´

řC
p“1 Is̃p

¯

, given by:
MεpΠq “

»

—

—

—

—

—

—

—

—

—

–

γ̄1M1
ε γ̄0T1 O1,3 ¨ ¨ ¨ O1,C O1,C

O2,1 γ̄2M2
ε γ̄0T2 ¨ ¨ ¨ O2,C´1 O2,C

...
...

...
...

...
...

OC´1,1 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ γ̄C´1M
C´1
ε γ̄0TC´1

OC,1 ¨ ¨ ¨ OC,3 ¨ ¨ ¨ ¨ ¨ ¨ γ̄CM
C
ε

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

where Op,p1 is the zero matrix with dimension Is̃p ˆ Is̃p1 ,
and Tp is the Is̃p ˆ Is̃p`1 dimensional matrix representing
transitions from page p to the next one (e1, is all zero vector,
except for first component which is one)

Tp “

„

OIs̃p ´1ˆIs̃p`1

e1



.

We derive an optimal menu design with the aim of max-
imising the overall expected revenue generated for cases with
small values of ε.

Look Only Ahead (LoA) Browsing: We define M0pΠq
to represent a specialized browsing pattern, in which the
customer only scans the next item down the list, i.e., when
ε “ 0. In this case, the matrices tMp

0 up are upper triangular
matrices such that mp

k,l “ 1 if and only if l “ k ` 1. In
the next section, we show that for small values of ε, the
optimizers for general browsing setting converge to the the
optimizers of LoA browsing setting.

Expected revenue for given policy Π: Let Rpε pk; Πq be
the conditional expected revenue, under ordering policy Π,
when user starts browsing from position k on page p. The
expected conditional revenue derived by the system for a
given user before quitting with/without purchase equals:

Rpε pk; Πq “ αp,kωp,k ` ᾱp,k
ÿ

p1,k1

m̃p,p1

k,k1R
p1

ε pk
1; Πq (1)

1 ď p ď C, 1 ď k ď Is̃p .

Define fpΠ, εq “ R1
ε p1; Πq. The menu designer is interested

in the optimal menu ordering policy pΠ˚q defined by:

f˚pεq :“ max
ΠP∆P

fpΠ, εq “ fpΠ˚, εq (2)

For different values of ε, we define the set of optimizers as:

Π˚pεq :“ arg max
Π

fpΠ, εq. (3)

Theorem 1. [Perturbation] There exists ε̄ ą 0, such that
the set of optimizers for any ε-system is same as that for
LoA system, i.e., Π˚pεq “ Π˚p0q for all ε ď ε̄. ♦

Proof: Appendix (VII-A).

In view of the above theorem, we now derive an optimal
menu using optimal menu(s) of LoA system, i.e., from
Π˚p0q.

III. MENU OF MENUS WITH LOA

We have the same setup as defined in the previous section
with extra assumption that ε “ 0. Let fpΠ, 0q be the revenue
generated by the menu when the items are laid out on the
menu according to ordering policy Π “ pP0, P1, ¨ ¨ ¨ , PCq
with classes sorted on different pages as per order P0 and
each class c on the page is ordered as per the order Pc. Then,
mathematically, we have :

fpΠ, 0q “

C
ÿ

c“1

WcpΠq, where, (4)

WcpΠq :“
ÿ

iPIc

qc,ipΠqwc,i, (5)

qc,ipΠq :“ γ̄
pr̃c´1q
0

śr̃c´1
p“1 κs̃p γ̄

Is̃p´1
p (6)

βc,i

rc,i´1
ź

k“1

γ̄r̃c β̄c,sr̃c,k
,

with κc :“
ś

iPIc
β̄c,i. Here, qc,ipΠq can be interpreted as

the probability that the customer will buy item i belonging
to class c, when the classes are ordered according to permu-
tation matrix P0 and the items for the class c are ordered
according to Pc, c ą 0. The menu designer is interested
in finding the optimal permutation Π˚ that maximize the
overall expected revenue obtained i.e.

f˚p0q “ max
Π

fp0,Πq.

The model setting considered in the [5, Lemma 1] can
be seen as a special case of the Look Only Ahead (LoA)
browsing where the authors devise an ordering scheme based
on the score or index value given through the function hp.q
(defined below) for a menu containing only one page and
having items from one particular class.

Definition III.1. For a given class c P C assigned to page p
where the quitting probability is γp, we say that item i1 is
bigger than item i2, according to the rule h (represented by,
i1 ąΘ

h i2) if hpi1; Θq ě hpi2; Θq. Here, hpi; Θq is defined
as:

hpi; Θq :“
βc,iwc,i

1´ γ̄pβ̄c,i
. (7)

where βc,i and wc,i are the attraction probabilities and price
of item i respectively, note the ordering depends upon the
parameters, Θ :“ ttβc,i, wc,iul, γpu.

We refer to ordering scheme given based the score/index
given by the above function as the h-index ordering policy.
In the following theorem, we further extend the scope of [5,
Lemma 1] to a more generalized menu by trying to construct
an optimal menu of menus for LoA system using an h-index
based ordering scheme.

Theorem 2. Assume γp “ γ for all p. Then, the optimal
menu of menus that solves (2) for LoA system is given by
the following:

(i) Let ri˚1 , i
˚
2 ¨ ¨ ¨ , i

˚
Ic
s be the optimal order of the items

of a class c, then

i˚1 ą
Θc

h i˚2 ą
Θc

h , ¨ ¨ ¨ ,ąΘc

h i˚Ic ,with (8)
Θc :“ ttβc,i, wc,iui, γu.



(ii) Additionally, the optimal average revenue for this class
c is given by:

W˚
c “

Ic
ÿ

j“1

βc,i˚j
wc,i˚j

«

j´1
ź

l“1

β̄c,i˚l
γ̄

ff

. (9)

(iii) Let rc˚1 , c
˚
2 ¨ ¨ ¨ , c

˚
I s be the optimal allocation of classes

to pages, then

c˚
1 ą

Θ
h c

˚
2 ą

Θ
h , ¨ ¨ ¨ ,ą

Θ
h c

˚
I , with Θ :“ ttβc, wcuc, γ0u, (10)

wc :“
W˚
c

p1´ κ̄cγ̄Ic´1q
, βc :“ 1´ κ̄cγ̄

Ic´1. (11)

(iv) The optimal expected revenue for the entire menu
equals:

f˚p0q “
C
ÿ

k“1

wc˚k
βc˚k

k´1
ź

j“1

rβ̄c˚j
γ̄0s. ♦ (12)

Proof: Appendix (VII-B).

IV. LEARNING THE OPTIMAL RANKING

In the previous section, we study the optimal ranking
(menus) in Menu of Menus with LoA browsing and their
properties. In reality, the menu designer will not know the
customer behaviour related parameters, β and γ. They would
only have knowledge about which items belong to which
classes. In this section, we are interested in obtaining the op-
timal ordering policy alongside learning the above required
parameters. Towards this, we provide a greedy algorithm and
illustrate its convergence to the optimal performance.

In the Online Greedy Algorithm (OGA), we suggest an
iterative scheme to update the estimates rβ̂c,is’s, rγ̂ps’s and
γ̂0, which then are used to choose a revenue optimal menu
(for LoA browsing). One of the strengths of the OGA is that,
whatever is the succession of the menus that the different
customers are facing, the OGA always learns the parameters
of the model (rβc,isi, rγpsp and γ0) and therefore the optimal
menu. This is true at least asymptotically as proved by
Theorem 3. However, this scheme does not guarantee that
the convergence of all the estimators will be quick enough
to ensure sufficient accuracy (required for choosing the
correct revenue optimal menu) for initial (or finite number
of) customers. Proposition 4 provides a result concerning the
finite-time behaviour of the algorithm.

Let t P N` represent the number of customers browsing
the menu. Let Πptq be the ordering policy used to design
the menu shown to the tth customer. Let θc,iptq P t0, 1u
be the random variable associated with the event that the
tth customer has seen item i from class c, and let ζc,iptq P
t0, 1u be the random variable indicating whether or not the
customer bought that item. For a given ordering policy Πptq
and the associated vectors s̃ptq “ rs̃1ptq, . . . , s̃Iptqs, θc,iptq
is drawn according to a Bernoulli distribution with mean
equal to qc,ipΠq{βc,i (see (6)). Moreover, ζc,iptq is drawn
from a Bernoulli distribution with parameter βc,i.

For each i, let vc,iptq :“
řt
t1“0 θc,ipt

1q be the number
of customers that were shown item i among the first t

customers, and ηpptq :“
řt
t1“0p1 ´ ζs̃p,sp,1 pt

1qq be the
number of customers that did not purchase the first item
displayed in the menu, for any t ě 0. Similarly, let
η0ptq :“

řt
t1“0p1´ ζs̃1,s1,Is̃1

pt1qq be the number of times a
customer did not purchase the item shown at the last level
of page 1. Recall that s̃1, s1,Is̃1

is the item displayed in the
last level of page 1. We assume here that one can observe
the items (among the menu) seen by the customer. Define
step size sequences taptq “ 1

t`1u Ă p0,8q.

Algorithm Explanation: We initialize the algorithm with a
price based policy (i.e., arranging items within class in de-
creasing order of their prices and then arranging the classes
in the decreasing order of wc). Observe that ζs̃p,sp,k ptq
denotes whether the tth customer bought the item in level
k at page p. Similarly, θs̃p,sp,k ptq denotes whether the tth

customer bought the item in level k at page p. Thus, given
a customer bought an item at page pq in level kq , (13) and
(14) update ζc,i to 1 for the item picked, and keep it zero
for the other items. Moreover, all the items before page pq
are observed. The first Indicator function in (15) updates θc,i
to 1 for all the items observed before page pq . The second
Indicator function updates θc,i for the items observed on
page pq before level kq , including kq .

β Estimation: Given that we have the estimate β̂c,iptq and
item i was seen at time t`1 (i.e. θc,ipt`1q “ 1), β̂c,ipt`1q is
updated using (16). Note that β̂c,iptq “

ř

t1ďt ζc,ipt
1
q

vc,iptq
, where

vc,iptq gives the number of observations of the related item
i belonging to class c and

ř

t1ďt ζc,ipt
1q ď vc,iptq. So, the

update is just an iterative form of law of large numbers.

γ estimation: For each page p, we keep an estimate of the
continuation probability γp. This is done by keeping track of
the number of times we do not purchase the item at the first
level of the page and continue to see the second item. ηpptq
gives the number of estimates for γp, while the estimate
γ̂p can be obtained using

ř

t1ďt θs̃p,sp,2pt
1q (number of

customers that have seen items in position 2 on page p) and
ηpptq, i.e., ¯̂γpptq “ 1´ γ̂pptq where ¯̂γpptq “

ř

t1ďt θs̃p,sp,2 pt
1
q

ηpptq
.

Thus (17) is the usual way of rewriting the sample mean
estimator for ¯̂γp, (which is the probability of continuing to
browse for page p) using a stochastic approximation based
scheme. Iteration (18) can be explained in a similar way.

Online Greedy Ranking (OGA) Initialization:
A tuple of doubly stochastic matrices Πp0q “

pP0, P1, ¨ ¨ ¨ , PCq. For each new customer t “

1, 2, . . . , n

1) Use the ordering policy Πptq.

2) Observe the quitting level of the customer as
ppq, kqq and his last action ζs̃r̃ ptq. Compute:

ζs̃pq ,spq,kq
ptq “ 1, if purchased (13)

ζc,iptq “ 0, @c, i s.t. i ‰ spq,kq (14)
θs̃p,sp,k ptq “ 1păpq ` 1kďkq,p“pq (15)



3) Compute:

β̂c,ipt` 1q “ β̂c,iptq ` apvc,ipt` 1qq (16)

ˆθc,ipt` 1q
´

ζc,ipt` 1q ´ β̂c,iptq
¯

¯̂γppt` 1q “ ¯̂γpptq ` apηpptqq (17)

ˆ

´

θs̃p,sp,2 ptq ´
¯̂γpptq

¯

γ̂ppt` 1q “ 1´ ¯̂γppt` 1q
¯̂γ0pt` 1q “ ¯̂γ0ptq ` apη0ptqq (18)

ˆ

´

θs̃2,s2,1 ptq ´
¯̂γ0ptq

¯

γ̂0pt` 1q “ 1´ ¯̂γ0pt` 1q

5) For each class c, update P0pt ` 1q where for each
pp, cq, set p̃cppt` 1q “ δr

c˚p
,p, with tc˚pu are as defined

in the theorem 2. using β̂pt` 1q and γ̂pt` 1q.

In the next theorem, we show that the above greedy
algorithm converges to the optimal menu where the menu
contains a single page. This result can be easily extended
to prove the convergence of OGA for a menu containing
multiple pages. The proof of the extension is avoided to
keep the explanations simple.

Theorem 3. Let I denote the item set with 0 ă βi ă 1 for
all i P I and assume 0 ă γ ă 1. Let P˚ be the permutation
matrix corresponding to the optimal menu order. Then, we
have the following:

(i) With probability one, there exists a customer index t˚
such thatP ptq “ P˚, for all t ě t˚.

(ii) Further, the derived time-averaged revenue W ptq, con-
verges to optimal expected revenue with probability
one: W ptq ÑW˚, where,

W ptq :“
1

t

ÿ

t1ďt

n
ÿ

k“1

ζskpt1qpt
1qwskpt1q. ♦

Proof: Appendix (VII-C).
Remark: The above theorem highlights the strength of

OGA. It gives assurance that OGA will eventually learn all
the customer parameters and converge to the optimal menu,
irrespective of the noise present in the samples collected for
parametric learning.

We are now interested in knowing the number of esti-
mates required to achieve convergence with a given proba-
bility. For a given α ą 0, the following proposition proves
the existence of a time index t0 (or customer index) beyond
which the algorithm converges to the optimal solution with
at least probability 1´ α.

Proposition 4. For every α ą 0, there exists t0 ă 8, such
that the OGA converges to the optimal menu, for all t ě t0,

with probability 1´ α. Here t0 is solution of:

r2´ p1´ di ` di expp´
d2{2

K2
qqt ´

p1´ q ` q expp´
d2{2

K2
qqts0 ě 1´ α,

with rxs0 “ maxt0, xu, d “ mini,jPI;i‰j | hpi; Θq ´
hpj; Θq | and q “ 1´maxiPI βi. In other words, for every
α ą 0, there exists a finite t0 ą 0 such that:

P rP ptq “ P˚, for all t ě t0s ě 1´ α. ♦

Proof: Appendix (VII-D).

V. NUMERICAL EXPERIMENTS

A. Perturbation Analysis

In this section, we compare the optimal expected revenue
for a given system and the expected revenue obtained by the
optimal ordering of the equivalent LoA system. We compute
both the Monte-Carlo estimate and the theoretical value for
the expected revenue and plot them. For the Monte-Carlo
estimates, we averaged the revenue obtained over 1000 cus-
tomers. The theoretical value was obtained using numerical
computations. For a given ε and policy Π, the corresponding
revenue can be obtained by solving for R1

ε p1; Πq in (1). The
theoretical benchmark value was obtained by going through
each possible permutation of menus and picking the policy
which gives the highest revenue. The theoretical value for h-
index menu was obtained by using the h-index policy (say
Πh) for ε “ 0 (LoA system) to calculate R1

ε p1; Πhq for
different values of ε. The graphs in Fig. 2. show the plot for
expected revenue for a system with three classes having 4, 3
and 3 items. We have also included the plot for the expected
revenue on using a price-based menu.

Fig. 2: C “ 3; γ0 “ 0.5; γ “ 0.1 and 0.5 for the first and
second graphs respectively

Fig. 3: C “ 3; γ0 “ 0.5; tγpu “ t0.1, 0.2, 0.3u and
t0.5, 0.6, 0.7u for the first and second graphs respectively

We take γ0 “ 0.5 and consider two instances of this
system with different levels of user patience within the



pages, specifically γ “ 0.1 (in the left sub-figure of Fig.
2) and 0.5 (in right sub-figure). The attraction probabilities
and prices in both are fixed and are inversely proportional.
We observe that as the quitting probability γ increases, the
h-index menu gives better approximations for the optimal
revenue for larger range of ε (in right sub-figure). As we
decrease the quitting probability, the menu obtained by h-
index gives good approximations for lower range of ε. The
percentage revenue loss at ε “ 1 for first and second graphs
in Fig. 2. is 7.448% and 3.9339% respectively. The green
plot shows the performance of a price-based menu, which
is significantly inferior.

We also observe the performance of h-index menu in a
system with different γp for different pages, in particular
with increasing values of γp over the pages. Fig. 3 shows
the performance of the same h-index menus as in Fig. 2
(by taking γ “ 0.1 and 0.5), except that now we have
the quitting probabilities γp “ 0.1, 0.2 and 0.3 for the first
system (in the left sub-figure of Fig. 3) and γp “ 0.5, 0.6
and 0.7 for the second system (in the right sub-figure of
Fig. 3). The percentage revenue loss at ε “ 1 for first
and second graphs in Fig. 3. is 7.5488% and 3.9534%
respectively. We observe that small changes of γp across
different pages do not severely affect the performance of h-
index menu. Price based menu is once again significantly
inferior. Fig. 4 (left sub-figure) portrays another example

Fig. 4: (left) γ0 “ 0.3; (right) γ “ 0.4, γ0 “ 0.5

with C “ 3, and same number of items as before in each
class. It contains the plots of theoretical values and not the
Monte-Carlo Estimates. We take two different sets of γp.
Three h-index menus are generated for each of the two cases,
by using γ1, γ2 and γ3 to create the menu. In this example,
the level of user patience changes more significantly along
the pages. For case (a), γp “ t0.2, 0.4, 0.7u. The percentage
revenue loss at ε “ 1 is 5.059%, 3.839% and 3.8588% for
the three created menus. However, the average percentage
revenue loss is 2.336%, 2.577% and 2.585% respectively.
For case (b), γp “ t0.4, 0.7, 0.9u. The percentage revenue
loss at ε “ 1 is 2.474% while the average percentage
revenue loss is 0.594% and both values change negligibly
for other values of γp. We observe that for lower levels of
user patience (case (b)), all three h-index policies perform
optimally for a significant range of ε. For case (a), h-index
policy corresponding to γ1 performs optimally for a smaller
range of ε. h-index policies corresponding to γ2 and γ3

do not perform optimally for any ε. We observe that as
user patience gets higher, h-index policy may perform sub-
optimally. However, such scenarios are less likely to be
observed.

B. Finite-Time Convergence Rate of OGA

The graph in Fig. 4 (right sub-figure) shows a sample
path of the time averaged revenue for the Online-Greedy
algorithm in LoA system. We take C “ 3 and number of
customers “ 3000. The 3 classes have 7, 7 and 6 items
respectively. The initial policy is taken to be a price-based
policy and over-time as the parameter estimates get better,
we start converging to the h-optimal policy. The graph
portrays the result proved in theorem 3 regarding the conver-
gence of the policy given by OGA to the optimal policy. The
expected revenue received by implementing OGA seems to
asymptotically converge to the benchmark value. Even from
the point of view of finite-time analysis, it can be observed
that after 3000 customers, the percentage revenue loss is
7.017% when using the policy obtained by OGA.

VI. CONCLUSION

In this paper, we extend the results of [5] where authors
focus on a Slated cascade model. We drop the assumption
that customer will scan the items from top to bottom as
assumed in [5] and introduce a variation by considering
classes of items. We find the optimal ordering policy for
LoA browsing and prove its optimality even for instances
of browsing which are not LoA. We propose a learning
algorithm that learns the model parameters efficiently and
derive mathematical results regarding its convergence to
the optimal ordering policy. Moreover, experiments show
that the h-index policy performs well in general browsing
scenarios especially when user patience is not high, which
is highly likely.
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VII. APPENDIX

A. Proof of theorem 1

Consider Π P ∆P . We begin by showing the continuity
of fpΠ, εq. Rewriting the system of equations in (1) in the
vector form, we have:

pI ´BMεpΠqq

»

—

—

–

R1
ε p1; Πq

R1
ε p2; Πq

...
RCε pIs̃C ; Πq

fi

ffi

ffi

fl

“

»

—

—

–

α1,1ω1,1

α1,2ω1,2

...
αC,Is̃CωC,Is̃C

fi

ffi

ffi

fl

where B is an IˆI diagonal matrix, having entries p1´αp,kq
for 1 ď p ď C, 1 ď k ď Is̃p . For the sake of understanding,
the explicit form of MεpΠq where Π assigns a class having
4 items on page 1 and a class of 3 items on page 2 is given
below:
»

—

—

—

—

—

—

—

–

0 γ̄1ε̄
1
1 γ̄1m

1
1,3 γ̄1m

1
1,4 0 0 0

γ̄1m
1
2,1 0 γ̄1ε̄

1
2 γ̄1m

1
2,4 0 0 0

γ̄1m
1
3,1 γ̄1m

1
3,2 0 γ̄1ε̄

1
3 0 0 0

0 0 0 0 γ̄0.1 0 0
0 0 0 0 0 γ̄2ε̄

2
1 γ̄2m

2
1,3

0 0 0 0 γ̄2m
2
2,1 0 γ̄2ε̄

2
2

0 0 0 0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

To establish the continuity of Rpε pk; Πq, we first need to
show that pI ´ BMεpΠqq´1 exists. Towards this, consider
the continuity of pI´BMεpΠqq´1 at ε “ 0 and observe that
BM0pΠq has non-zero elements only in positions pi, i` 1q
with 1 ď i ď I ´ 1 and hence pI ´ BM0pΠqq´1 exists
as DetppI ´ BM0pΠqq´1q ‰ 0. As ε Ñ 0, BMεpΠq Ñ
BM0pΠq for any given Π. As the determinant is a contin-
uous function, there exists an ε̂ such that pI ´BMεpΠqq´1

exists @ε P r0, ε̂s and is continuous in ε. Since there are
finitely many Π, one can choose a common ε̂ for all Π.
Thus, Rpε pk; Πq is continuous @ε P r0, ε̂s for every possible
p, k,Π. Specifically, R1

ε p1; Πq is continuous, i.e., fpΠ, εq is
continuous @ε P r0, ε̂s, for all Π.

Finally, let Π˚0 P Π˚p0q, be any optimizer at ε “ 0. Then,

fpΠ˚0 , 0q ´ max
ΠP∆P,ΠRΠ˚p0q

fpΠ, 0q ą 0.

Define the following function of ε,

gpεq :“ fpΠ˚0 , εq ´ max
ΠP∆P,ΠRΠ˚p0q

fpΠ, εq. (19)

We know that fpΠ˚0 , εq and fpΠ, εq are both continuous for
ε P r0, ε̂s, and max function applied over a continuous func-
tion is continuous. Therefore, gpεq is continuous @ε P r0, ε̂s.
Using gp0q ą 0 and the continuity of g, there exists another
ε̄ ď ε̂ such that gpεq ě 0 for all ε ď ε̄.

Thus from (19), the policy Π˚0 is also optimal for system
with any 0 ď ε ď ε̄. ♦

B. Proof of theorem 2

For any policy, Π “ pP0, P1, . . . , PCq, let:

V pΠq “ fpΠ, 0q “
C
ÿ

c“1

WcpΠq (20)

and let the conditional revenue for any class c, given ordering
Pc, be denoted as:

GcpPcq “
ÿ

iPIc

βc,iwc,i

rc,i´1
ź

k“1

p1´ γqp1´ βc,s
r̃c,k
q

Consider an optimal policy for any class c,

P˚c P arg max
Pc

GcpPcq, and let W˚
c :“ max

Pc

GcpPcq. (21)

We first prove the following:

V pΠq ď V prP0, P
˚
1 , ¨ ¨ ¨ , P

˚
Csq (22)

Using (5) and (20), we have:

V pΠq “
ÿ

iPIc

qc,ipΠqwc,i

Substituting the value of qc,i from (6) and taking γp “ γ
for all pages, we get the following:

V pΠq “

C
ÿ

c“1

ÿ

iPIc

wc,iγ̄
pr̃c´1q
0

śr̃c´1
p“1 κs̃p γ̄

Is̃p´1

βc,i

rc,i´1
ź

k“1

p1´ γqp1´ βc,s
r̃c,k
q

ñ V pΠq “
C
ÿ

c“1

γ̄0
pr̃c´1qśr̃c´1

p“1 κs̃pp1´ γq
Is̃p´1 GcpPcq,

From the above equation, it can be easily observed that for
any Π “ pP0, P1, . . . , PCq, (22) holds true. We emphasize
that the assumption γp “ γ for all pages p is needed for the
above inequality to hold true. As the set of all permutations
is finite, We can directly take the max on both sides in (22)
to get:

max
Π

V pΠq ď max
P0

V prP0, P
˚
1 , ¨ ¨ ¨ , P

˚
Csq (23)

ñ max
Π

V pΠq “ max
P0

V prP0, P
˚
1 , ¨ ¨ ¨ , P

˚
Csq (24)

(24) is true because Π˚ :“ rP˚0 , P
˚
1 , ¨ ¨ ¨ , P

˚
Cs can achieve

the equality where P˚0 optimizes the right hand side. Finally,
[5, Lemma 1] can be used to solve the optimization problem
(21) for each c. This proves part piq and piiq of the theorem.
Further V ˚ :“ maxΠ V pΠq equals

V ˚ “ max
P0

C
ÿ

c“1

p1´ γ0q
pr̃c´1qśr̃c´1

p“1 κs̃p γ̄
Is̃p´1W˚

c ,

which can be rewritten in the following way, that facilitates
using [5, Lemma 1] again now across the pages,

V ˚ “ max
P0

C
ÿ

c“1

wcβc

r̃c´1
ź

p“1

rp1´ βs̃pqp1´ γ0qs, (25)

where the consolidated terms twc, βcu are defined in equa-
tion (11) in the theorem. Thus, part piiiq and pivq of the
theorem follow by applying [5, Lemma 1] to (25). ♦



C. Proof of theorem 3

Since we only have a single page, we use all the
previously defined notations without the subscript c, for
simplicity. For any item i, let pi be the minimum probability
of a typical customer visiting item i, among all the possible
permutation matrices, i.e.,

pi :“ min
PPP

qipP q{βi, (26)

where qipP q is equivalent to (7). Clearly pi ą 0 for all i,
since for all i, 0 ă βi ă 1, 0 ă γ ă 1 and the number
of permutations |P| is finite. One can lower bound vipnq
by (coupled) binomial random variable Binpn, piq which
converges to 8 as n Ñ 8 with probability one (w.p.1).
Therefore, vipnq Ñ 8 as nÑ8 w.p.1 and hence by strong
law of large numbers, all the beta estimators converge to
their respective true values w.p.1. The same is the case with
estimator of γ. The h-index ordering given by (7) are defined
using continuous functions of rβlsl and γ, hence there exists
a neighbourhood of true values pγ, rβlslq, for which the
menu chosen using h-index rule (7) in Update step of OGA
equals that given by the optimal one of the theorem 2. This
proves part (i) of the theorem. Part (ii) immediately follows
from part (i), once again by law of large numbers (applied
to iterates after t˚). ♦

D. Proof of proposition 4

Approach: The proof of the theorem is a sophisticated
application of the Hoeffding’s inequality after bounding the
distribution mean of the number of observations/samples for
all the items from below.

We denote fpw, β, γq “ wβ
1´p1´γqp1´βq which is a Lip-

schitz function where we let K be the associated Lips-
chitz constant. We define Mβi

pviptqq “ βi ´ β̂iptq and
Mγpηptqq “ γ´ γ̂ptq as the noise observed while estimating
the parameters for customer preference and patience level
respectively.
For every i P I, the following implies that:

| fpwi, βi, γq ´ fpwi, β̂iptq, γ̂ptqq |

“ | fpwi, βi, γq

´fpwi, βi ´Mβi
pviptqq, γ ´Mγpηptqqq |

ď Kp|Mβi
pviptqq | ` |Mγpηptqq |“ gi, say.

Now, we have to recall the following fact: For any
x1, y1, x2, y2 P R, we have x1`x2, y1`y2 sharing the same
ordering relation as x1, y1 i.e. x1 ě y1 ùñ x1 ` x2 ě

y1 ` y2 (or x1 ď y1 ùñ x1 ` x2 ď y1 ` y2) if
| x2 ´ y2 |ď| x1 ´ y1 |. We do not prove this fact due
to its simplicity.

We aim to show that for all the items of the set I, if the
difference in the estimators for the hp.q are bounded, then
the menu ordering obtained through the estimators coincides
with the optimal ordering. Therefore, if for every i, gi ă d,
then the optimal order is preserved. Consider the sequences
of noises tMβipviptqqutě1 and tMγpηptqqutě1. We aim to
prove that there exists to such that with at least probability

1´ α, for every t ą to we have the sequence of estimators
tβ̂iptqutět0 and tγ̂tět0u preserving the optimal ordering.

P rXigi ď ds ě 1´ α (27)

for all t ě to. If αi ď α
I , with P rgi ď ds ě 1´αi, then by

Frechet inequality, we know that:

P rXigi ď ds ě r
ÿ

i

p1´ αiq ´ pI ´ 1qs0 ě r1´ αs0,

with rxs0 “ maxt0, xu. By using Frechet inequality, we
have reduced the problem to finding t0 ą 1, such that for
all t ą t0:

P rgi ď ds ě 1´
α

I
. (28)

Now, we use Hoeffding’s inequality to bound the above
probability for a fixed value of viptq. After taking expec-
tation on both the sides and bounding the mean of viptq by
di from below, we get:

P rK |Mβipviptqq |ď d1s ě 1´ p1´ di ` di expp´
2d2

1

K2
qqt.

By Hoeffding’s Inequality, we have:

P p|X ´ ErXs| ě tq ď exp

ˆ

´2n2t2
řn
i“1pbi ´ aiq

2

˙

Now, applying the Hoeffding on viptq first, we have:

P rK |Mβi
pviptqq |ď d1s

ě 1´ exp

˜

´2pviptqq
2t2

řviptq
i“1 p1´ 0q2

¸

“ 1´ 2exp
`

´2pviptqqpd1{Kq
2
˘

Taking expectation on both the sides, we get that:

P rK |Mβi
pviptqq |ď d1s

ě 1´ 2 ˚ Erexp
`

´2t2viptq
˘

s

“ 1´ 2 ˚
n
ÿ

j“0

exp
`

´2t2j
˘

pdji qp1´ diq
n´j

“ 1´ 2 ˚
n
ÿ

j“0

ppdi ˚ expp´2t2qqjp1´ diq
n´jq

“ 1´ 2 ˚ pdi ˚ expp´2pd1{Kq
2q ` 1´ diq

t

Note that for d1 ` d2 “ d, we have :

P rKp|Mβipviptqq | ` |Mγpηptqq |qs ď ds

“ P rKp|Mβi
pviptqq |qs ď d1,Kp|Mγpηptqq |qs ď d2s

ě rrP rKp|Mβi
pviptqq |q ď d1s

`P rKp|Mγpηptqq |qs ď d2s ´ 1s0

ě r1´p1´pi`di expp´
2d21
K2 qq

t`1´p1´q`q expp´
2d22
K2 qq

ts0.

(by Hoeffding’s inequality)



where q “ 1´maxiβi. Therefore by taking d1 “ d2 “
d
2 ,

and by defining t such that

r2´ p1´ pi ` di expp´
d2{2

K2
qqt ´

p1´ q ` q expp´
d2{2

K2
qqts0 ě 1´ α.

we can conclude that (27) is satisfied. ♦


	Introduction
	Menu of Menus with general browsing
	Menu of Menus with LoA
	Learning the optimal ranking
	Numerical Experiments
	Perturbation Analysis
	Finite-Time Convergence Rate of OGA

	Conclusion
	References
	Appendix
	Proof of theorem 1
	Proof of theorem 2
	Proof of theorem 3
	Proof of proposition 4


