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ABSTRACT:

This paper addresses physics-informed deep learning schemes for satellite ocean remote sensing data. Such observation datasets
are characterized by the irregular space-time sampling of the ocean surface due to sensors’ characteristics and satellite orbits. With
a focus on satellite altimetry, we show that end-to-end learning schemes based on variational formulations provide new means to
explore and exploit such observation datasets. Through Observing System Simulation Experiments (OSSE) using numerical ocean
simulations and real nadir and wide-swath altimeter sampling patterns, we demonstrate their relevance w.r.t. state-of-the-art and
operational methods for space-time interpolation and short-term forecasting issues. We also stress and discuss how they could
contribute to the design and calibration of ocean observing systems.

1. INTRODUCTION AND PROBLEM STATEMENT

Satellite sensors provide invaluable information for the observa-
tion, reconstruction, forecasting and simulation of upper ocean
dynamics, which is of key importance for variety of scientific
and societal challenges, including for instance marine pollution
monitoring, offshore activities, maritime traffic, climate stud-
ies,.... Ocean processes involve a variety of space-time scales
along with multi-scale interactions. As such, no in situ and
space observing system can inform all the scales and processes
in play at once. This may result both from the properties of
the sampling pattern of the observing systems (e.g., punctual
observation for fixed-point systems, along-track data of polar-
orditing satellites) as well as from the sensitivity of sensors of
atmopsheric conditions (e.g., the cloud cover for infrared satel-
lite sensors, heavy rain and/or strong wind conditions for ra-
diometers and SAR sensors). Overall, ocean remote sensing
data, including from satellite earth observation mission, res-
ult in irregularly-sampled datasets. The full exploitation of the
resulting large-scale geospatial dataset collected over the last
decades through learning-based schemes then asks for specific
methods and tools as investigated in this paper.

As a typical case-study, we focus here on satellite altimetry and
sea surface currents. The launch of the first operational alti-
metry missions in the 80’s has deeply renewed the knowledge of
ocean circulation, especially with the importance, much stronger
than expected before, of ocean turbulence, especially ocean ed-
dies (i.e., processes characterized by horizontal scales below a
few hundreds of kilometers). Satellite altimeters currently in-
volve narrow-swath polar-orbiting radar sensors. As illustrated
in Fig.2, they only sample the ocean surface under the track of
the satellite. On a daily scale, even with a 4-satellite constel-
lations, they may only cover about 1% of the ocean surface.
Space-time interpolation techniques are then critical to deliver
gridded gap-free products for sea surface currents, which are

key data for a wide range of applications (e.g., plastics drift,
marine pollution monitoring, maritime traffic routing, data as-
similation for ocean-atmosphere models,....). State-of-the-art
operational products rely either on optimal interpolation (OI)
techniques (Taburet et al., 2019) or on the assimilation of ocean
models (Tranchant et al., 2019). In both cases, these operational
products may not retrieve sea surface processes with character-
istic scales below 100km. Optimal interpolation schemes usu-
ally rely either on some expert-based calibration of covariance
models, which prove very complex for finer-scale processes.
Regarding model-driven data assimilation schemes, one may
question the complexity of the inversion of a full ocean state
given only very scarce observation data as well as the ability of
ocean models to match all the features and patterns informed by
observation data.

These limitations of both OI and model-driven data assimila-
tion along with the availability of large-scale observation data-
sets have motivated the investigation of data-driven schemes.
Broadly speaking, data-driven methods generally involve: (i)
the identification of some representation of the underlying pro-
cess from data, (ii) the use of this representation to reconstruct
the considered space-time processes from the available irregularly-
sampled observations. PCA-based and analog (i.e., nearest-
neighbor) methods (Alvera-Azcarate et al., 2005, Lguensat et
al., 2017) were first considered. As it has rapidly become the
state-of-the-art approaches for numerous signal and image pro-
cessing issues, including for instance for super-resolution or de-
noising problems (Dong et al., 2016, Chen et al., 2015), deep
learning naturally arises as a particularly appealing class of meth-
ods for ocean remote sensing data. Especially, recent advances
have been reported for the development of deep learning schemes
for the resolution of inverse problems (Chen et al., 2015, Ag-
garwal et al., 2019). In this context, an end-to-end learning
scheme based on a variational formulation has recently been in-
troduced to address inverse problems (Fablet et al., 2020). The

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-3-2021 
XXIV ISPRS Congress (2021 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-3-2021-295-2021 | © Author(s) 2021. CC BY 4.0 License.

 
295



underlying variational formulation provides means to embed
some physics-guided knowledge on the considered observing
systems and geophysical processes, while the end-to-end learn-
ing framework makes it direct to train both the different terms
of the variational model and the associated solver.

In this paper, we investigate this framework for the monitoring
of sea surface dynamics from satellite data. Through OSSEs
(Observing System Simulation Experiment) for altimetry case-
studies in a Gulf Stream region, we illustrate three different ap-
plications. We first address illustrate the reconstruction of SSH
(Sea Surface Height) fields from satellite-derived altimeter data
and include an evaluation w.r.t. state-of-the-art methods for
(Section 3.2). A second application addresses the short-term
forecasting of SSH fields (Section 3.3). The third application
explores whether we may learn to predict where to sample new
observations to complement satellite altimetry and best inform
sea surface dynamics (Section 3.4). These different applica-
tions point out new means to learn task-specific or task-adapted
representation and solvers for space-based ocean observing sys-
tems.

This paper is organized as follows. Section 2 describes the pro-
posed end-to-end learning framework. Section 3 presents the
considered OSSE framework for satellite altimetry and the three
different applications we carry out in this work. Section 4 fur-
ther discusses our main contributions and future work.

2. PROPOSED END-TO-END LEARNING
FRAMEWORK

This section presents the end-to-end learning framework that
we apply to satellite altimetry case-studies in Section 3. We first
introduce the considered variational formulation to deal with in-
verse problems with irregularly-sampled observation data (Sec-
tion 2.1). Section 2.2 introduces the associated trainable solver,
while the overall end-to-end learning approach is summarized
in Section 2.3 and skteched in Fig.1.

2.1 Variational model

In this work, we develop the application of the end-to-end learn-
ing framework introduced in (Fablet et al., 2020) to ocean re-
mote sensing case-studies. This framework relies on a vari-
ational formulation of inverse problems given some partial ob-
servation y over a subdomain Ω of a space-time state of interest
x. Formally, the reconstruction of state x from observation y
relies on the minimization of a following variational cost

UΦ,H (x, y,Ω) = λ1 ‖HΩ · (x− y)‖2 + λ2 ‖x− Φ(x)‖2 (1)

with ‖HΩ · (x − y)‖2 the observation term and ‖x − Φ(x)‖2
the prior. HΩ is the indicator of subdomain Ω. When consid-
ering space-time dynamics governed by differential operator,
operator Φ may be stated as flow operator

Φ(x)(t) = x(t−∆) +

∫ t

t−∆

M (x(u)) du (2)

where ∆ is the predefined time step and dynamical model M
governs differential equation dx/dt =M(x(t)).

Within this general variational setting, model-driven strategies
come to minimize the above variational cost according to a

physics-driven parameterization of flow operator Φ. This para-
meterization generally relies on some numerical integration scheme.
When considering sea surface dynamics, the derivation of ap-
proximate dynamical model, such as Surface Quasi-Geostrophy
(SQG) (Klein et al., 2009), is a complex issue, which may not
fully account for all dynamical regimes in play. Besides, one
may question the extent to which such models are relevant to
solve reconstruction problems.

Following (Fablet et al., 2020), we derive a neural network ar-
chitecture backed on variational formulation (1). Interestingly,
for a given parameterization of the prior ‖x− Φ(x)‖2, we may
jointly train operator Φ and the associated solver so that we
minimize some reconstruction performance metrics. Based on
interpolation experiments reported in (Beauchamp et al., 2020),
we consider a two-scale parameterization for operator Φ. The
latter may be regarded as a two-scale U-Net architecture ini-
tially introduced for image segmentation (Cicek et al., 2016).
Formally, this architecture relates to the following decomposi-
tion

Φ(x) = Up (Φ1 (Dw(x))) + Φ2(x) (3)

where Up() and Dw() are upsampling and downsampling op-
erators. Operator Φ1 applies to downsampled states and oper-
ator Φ2 processes to the full-resolution states. In our imple-
mentation, both operators Φ1 and Φ2 involve bilinear blocks
(Beauchamp et al., 2020). We may point out that other architec-
tures could be considered, especially auto-encoder and neural
ODE architectures. They were bencharmked in previous inter-
polation experiments with toy models and datasets, especially
chaotic Lorenz dynamics (Fablet et al., 2020). U-Net outper-
formed auto-encoder and ODE-based architectures, which mo-
tivate our choice here.

2.2 Trainable solver architecture

Given variational cost (1) and the associated neural network
implementation, we design a neural-network solver architec-
ture. Within a model-driven framework, the minimisation of
this variational cost generally exploits an iterative gradient des-
cent algorithms. Here, we benefit from automatic differenti-
ation tools embedded in deep learning frameworks to proposed
a gradient-based solver architecture. More precisely, given a
current estimate x(k) at iteration k, we consider the following
iterative update rule g(k+1) = LSTM

[
α · ∇xUΦ,H

(
x(k), y

)
, h(k), c(k)

]
x(k+1) = x(k) − G

(
g(k+1)

)
(4)

where α is a scalar parameter, LSTM() a LSTM (Long Short
Term Memory) model, {h(k), c(k)} the internal LSTM states
and G a linear layer which maps the output of the LSTM to the
space of state x. Given the ability of LSTMs to capture long-
term dependencies, this LSTM-based iterative update may be
regarded as a means to keep track of the full sequence of gradi-
ent updates when computing a new updates at iteration k. Sim-
ilar LSTM-based descent updates have been considered optim-
izer learning issues (Hospedales et al., 2020).

Overall, for a given initialization, the considered gradient-based
solver architecture applies a predefined number of steps of the
considered gradient-based iterative update, typically from 5 to
15 in our implementation.
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Figure 1. Sketch of the proposed end-to-end architecture for the reconstruction and forecasting of sea surface dynamics from
irregularly-sampled satellite observations: the proposed framework relies on the definition of a variational cost UΦ,H from which

we derive a gradient-based iterative solver. The latter is implemented as a residual network using a LSTM update rule. We let the
reader refer to the main text for a detailed presentation of the variational setting and of the associated solver.

2.3 End-to-end learning scheme

Based on variational formulation (1) and on the associated gradi-
ent solver, we introduce a end-to-end trainable architecture as
sketched in Fig.1. A key feature of this architecture is that
it considers as inputs the raw observation data. As such, we
may jointly train all the components of this architecture w.r.t.
some performance measure. In our experiments, we typically
implement training losses based on the mean square error for
the reconstruction of forecasting of variable x as well as of the
norm of its gradient x. Let us denote by ΨΦ,H,Γ(x(0), y,Ω) the
output of the end-to-end architecture given some observation y
over subdomain Ω and an initial estimate x(0). This amounts to
defining the following training loss

L = ν1

∑
n

‖xn − x̃n‖2 + ν1

∑
n

‖∇xn −∇x̃n‖2 (5)

with x̃n standing for reconstructed state

ΨΦ,H,Γ(x(0)
n , yn,Ωn), yn,Ωn).

To further constrain the training of operator Φ in (3), we con-
sider additional training losses corresponding to the auto-encoder
capabilities of operator Φ for both true and reconstructed states

ν3

∑
n

‖xn − Φ(xn)‖2 + ν3

∑
n

‖x̃n − Φ(x̃n)‖2.

Weighing factors ν1−4 are set using a cross-validation proced-
ure to balance the different losses in the training stage.

Regarding implementation issues, all experiments are run us-
ing a pytorch implementation using Adam solver. During the
training phase, we gradually increase the number of gradient-
based iterations in the considered end-to-end architecture and
decrease the learning rate. We may stress that we optimise all
trainable components, i.e. operator Φ and solver Γ. We refer

the interested reader to our pytorch implementation 1.

3. APPLICATION TO SATELLITE-DERIVED OCEAN
SURFACE TOPOGRAPHY

We report different application of the proposed end-to-end learn-
ing scheme to the analysis and reconstruction of sea surface cur-
rents from satellite-derived observations. We focus on satellite
altimetry data (Chelton et al., 2001, 1). We first introduce the
considered dataset within an OSSE (Observing System Simu-
lation Experiment) framework. We then report numerical ex-
periments for the following case-studies: (i) the space-time in-
terpolation of sea surface height (SSH) from along-track nadir
and wide-swath altimetry data, (ii) the short-term forecasting of
SSH dynamics, (iii) the design of adaptive sampling strategies
to improve the reconstruction of SLA fields.

3.1 Satellite altimetry OSSE

In this work, all the datasets are based on the NEMO model
(Nucleus for European Modeling of the Ocean) NATL60 con-
figuration (Molines, 2018) which is a state-of-the-art basin-scale
high-resolution (1/60◦) simulation used here as Ground Truth
(GT). A 10◦× 10◦ subpart of the GULFSTREAM domain [33◦

N, 43◦ N ; -65◦ W, -55◦ W ] is used (see Fig. 2), where Sea
Surface Height (SSH) is mainly driven by energetic mesoscale
dynamics. The resolution of the nature run is here downgraded
to 1/20◦. The pseudo-altimetric nadir and SWOT observational
datasets are generated through a sub-sampling of the Ground
Truth with realistic satellite constellations.

Regarding the pseudo-nadir dataset, representative of the cur-
rent observational capabilities, a constellation with 4 altimetry
missions (TOPEX/Poseidon, Geosat, Jason-1 and Envisat) from
October 1st, 2012 to September 29th, 2013 is used to simulate
along-track nadir observation from NATL60 data. An instru-
mental acquisition Gaussian white noise with variance σ2 =

1 https://github.com/CIA-Oceanix/DinAE_4DVarNN_torch
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GULFSTREAM

Case-study region SSH field ‖∇SSH‖ field

Nadir altimeter data wide-swath SWOT data DUACS interpolation

Figure 2. Considered OSSE case-study on satellite-derived sea surface altimetry: we implement an Observing System Simulation
Experiment (OSSE) for a case-study region along the Gulf Stream (top, left). We also depict an example of SSH (Sea Surface Height)

field (top center), of its gradient norm (top right), of the associated irregular-sampling observation data for nadir altimeters (bottom
left) and the upcoming SWOT wide-swath altimeter (bottom right), and of the corresponding gap-free DUACS interpolation using all

altimeter data (bottom right).

30cm is then added to the interpolated NATL60 simulation (Bal-
larotta et al., 2019). Similarly, we generate SWOT pseudo-
observations using the SWOT simulator tool (Gaultier et al.,
2015) are provided. Instrumental noise is also added to the
NATL60 subsampling. Because the SWOT-related noise can
have strong space-time correlations, they are first filtered out
via an initial preprocessing. Besides, our dataset comprises the
reconstruction issued from the operational DUACS OI-based
(Optimal Interpolation) products (Taburet et al., 2019). All data
are given as gridded fields with regular (0.05◦x0.05◦) resolution
on a scale daily.

We illustrate in Fig.2 an example of SSH field along with the
corresponding nadir altimeter and SWOT wide-swath altimeter
observations. This example illustrates how scarce is the spatial
sampling of the sea surface as sampled points cover only about
1% of the domain.

3.2 Space-time interpolation of SSH fields

This first application addresses the space-time interpolation of
SSH fields. In (1), observation operator HΩ encodes the mask
of the available altimeter data for each date and variable x refers
to the anomaly w.r.t. the OI fields over 10 consecutive days.
Regarding the parameterization of operator Φ, for each scale
we apply sequentially a convolution layer with 3x3 kernels, 10
filters and ReLu activation, a convolution later with 1x1 ker-
nels and 5 filters, a bilinear layer with 1x1 kernels and 10 fil-

ters and a convolution later with 1x1 kernels and 5 filters. The
coarse scale operator involves a subsampling by a factor of 8.
We sum the output of the two scales after upsampling using
a ConvTranspose layer. Regarding the architecture of solver
Gamma, we consider a convolutional LSTM in gradient-based
update (4) with 100-dimensional hidden states. For benchmark-
ing purposes, we evaluate the proposed scheme w.r.t. DUACS
OI, DINEOF (Alvera-Azcarate et al., 2005) and AnDA (Fablet
et al., 2017). To evaluate the relevance of the gradient-based
solver, we also include a comparison of the proposed end-to-
end learning framework where the solver is a fixed-point al-
gorithm as presented in (Fablet et al., 2019), referred to FP-
4DVarNet. We refer to the proposed end-to-end scheme using a
gradient solver as Grad-4DVarNet. As test dataset, we consider
a 20-day period from day 60 to day 80 of the considered time
series. For training, we use the remaining data with a 10-day
lag prior and after the test period.

As detailed in Tab.1, we report reconstruction performance in
terms of explained variance for the SSH field (R-score) and
the norm of its gradient (∇ R-score), which relates to the mag-
nitude of the sea surface current. For the proposed scheme, we
also evaluate the representation score (AE-score) of the trained
operator Φ through the explained variance of projection Φ(x)
w.r.t. x. The proposed framework outperforms the other data-
driven approaches and results in a relative gain of about 35%
(resp. 45%) in terms of mean square error for the reconstruc-
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Altimeter data DUACS interpolation Proposed scheme

Figure 3. Space-time interpolation of SSH fields from altimeter data: the first row reports the interpolated SSH fields using nadir
and SWOT wide-swath altimeter data (top left) for DUACS optimal interpolation (top center) and the proposed end-to-end learning

scheme (top right). The second row depicts the associated gradient norm. The reader may refer to Fig.2 to compare the reported
reconstructions with the true state.

tion of the SSH field (resp. its gradient norm) w.r.t. DUACS OI.
These results also stress the additional benefit of the trainable
gradient-based solver compared with a parameter-free fixed-
point architecture. We may also note that, besides the reported
reconstruction performance, the trained end-to-end architecture
retrieves a relevant representation of the SSH space-time dy-
namics through operator Φ, which cover up to 99% of their vari-
ance. We further illustrate these results in Fig.3. Especially, the
reconstruction of the more intense currents is clearly improved
compared with OI reconstruction. We may remind the reader
that in Fig.3, we only depict the altimeter data available for
the reconstruction date, given that the end-to-end architecture
is provide as inputs with 5 consecutive days of altimeter data
as well as the optimally-interpolated field. This explains why,
even if on the considered day no observation data are available
for the western area of the domain, we can reconstructs some
eddies, which are most likely partly sampled before or after the
considered date.

3.3 Short-term forecasting of SSH dynamics

The second case-study addresses the short-term forecasting of
SSH dynamics. It comes to apply a configuration similar to that
of the space-time interpolation case-studies where observation
operator H⊗ comes to assume that past dates are observed and
future ones are not. For instance, when considering a 5-day-
ahead forecasting from 3 past states, it amounts to considering
a 8-day state x, where observation domain Ω states that obser-
vation y is available only for the first three days. We also adapt
the training loss such that it evaluates the reconstruction per-

Model type R-Score ∇ R-score AE-score
OI 96.39 74.94

AnDA 96.23 80.25
DINEOF 96.49 81.62

FP-4DVarNet 96.69 78.90 99.27
G-4DVarNet 97.68 86.51 99.42

Table 1. Interpolation performance of the benchmarked
schemes for SSH interpolation from nadir altimeter and

SWOT wide-swath altimeter data: reconstruction performance
for SSH fields and their gradient norms for the considered

validation period. We refer the reader to the main text for the
definition of the different scores and the details on the

benchmarked schemes.

formance for the forecasting period. In this setting, for a n-day-
ahead forecasting, we jointly train variational model (1), more
specifically operator Φ, and solver Γ such that we best predict
the last n steps of each training sequence.

We consider a configuration for operator Φ and solver Γ sim-
ilar to the space-time interpolation case-study. Following (Ou-
ala et al., 2020), we also test a parameterization where state x is
higher-dimensional that the observation sequence (i.e., here, the
true SSH sequence). The motivation for considering augmen-
ted states is that SSH dynamics clearly depends on unobserved
processes, for instance ocean’s interior dynamics, that we may
expect the learning process to retrieve through the optimization
of the forecasting performance. We vary the number of past
dates, referred to as NT , used as inputs and the number of aug-
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Configuration dt = 1 dt = 2 dt = 3 dt = 4 dt = 5

NT = 1, NAug = 0 60.5% 62.4% 62.2% 60.4% 60.1%
(68.5%) (69.7%) (67.1%) (64.0%) (63.0%)

NT = 5, NAug = 0 70.8% 75.0% 74.3% 73.8% 70.0%
(78.8%) (78.8%) (75.8%) (73.3%) (69.5%)

NT = 5, NAug = 50 75.5% 80.5% 80.5% 78.5% 75.2%
(81.2%) (82.5%) (80.4%) (76.4%) (72.3%)

NT = 5, NAug = 100 75.9% 80.2% 81.2% 80.0% 76.8%
(81.8%) (82.6%) (81.4%) (78.6%) (75.6%)

NT = 5, NAug = 200 74.6% 80.0% 80.0% 77.8% 74.7%
(81.8%) (82.3%) (80.2%) (75.6%) (70.9%)

Table 2. Short-term forecasting performance of the proposed
end-to-end learning scheme: we evaluate the proposed

end-to-end learning framework, where we vary the number NT

of past SSH fields used as inputs and the dimension NAug of the
augmented components for variable x (i.e., NAug = 0

corresponds to a multivariate space-time field with the same
dimension of the SSH sequence). As performance metrics, we

compute a normalized mean square error (MSE) of the
dt-day-ahead forecasting with dt from 1 to 5 for the SSH and its
gradient norm. We let the reader to the main text for additional

details.

mented components NA in variable x to evaluate their impact
on the forecasting performance (Tab.2). The latter is evaluated
in terms of mean square error normalized by the variance of a
persistence model (i.e., assuming the SSH field remains con-
stant) for the SSH field and its gradient norm.

The reported results point out the relevance of a sequence of
past SSH fields to improve the short-term forecasting perform-
ance (e.g., 60% of explained variance of the SSH for a 5-day-
ahead forecasting using NT = 0 w.r.t. 77% for the best con-
figurations with NT = 5). We may point out that the repor-
ted performance metrics are a relative forecasting performance
score w.r.t. the persistence. This explains why this perform-
ance score is lower for a one-day-ahead forecasting than for a
two-day-ahead one. Similarly to (Ouala et al., 2020), the con-
figurations with augmented states also lead to an improvement
with a relative gain between 10% and 15% in terms of forecast-
ing performance. Interestingly, the trained models include the
relative weights given to each observation time steps in vari-
ational model (1). For instance, for configuration NT = 5 and
NAug = 50, the largest weight is given to time step t with a
value of 1.15, whereas time steps t − 2 and t − 3 are given
weights close to 1.0. Besides, time steps t− 1, t− 4 and t− 5
have the lowest weights with values between 0.6 and 0.8. While
tested here with gap-free fields as inputs, the proposed end-to-
end scheme shall also apply with irregularly-sampled fields as
inputs as well as multi-tracer inputs. This opens interesting re-
search avenues for future work.

3.4 Learning where to sample SSH measurements

We also investigate the proposed end-to-end learning frame-
work to learn where to sample additional measurements to im-
prove the reconstruction of SSH fields. Such sampling design
could be of key interest for scientific cruises to improve the
knowledge of sea surface conditions given by satellite obser-
vations. To address this issue, we extend variational setting
UΦ,H (x, y,Ω) (3) as follows

λ1 ‖H(ȳ) · (x− y)‖2 + λ2 ‖x− Φ(x)‖2 (6)

where ȳ is a coarse estimate of the SSH field. In the reported
experiments, we consider for ȳ the optimally-interpolated SSH
field using along-track nadir altimeter data. Here, H(ȳ) stands

Figure 4. Illustration of the training of an adaptive sampling
design for the reconstruction of SSH fields from

irregularly-sampled data: in the first row, we report for a
reference SSH field (top left), the associated OI reconstruction

from nadir altimeter data (top right) along with the
reconstruction issued from the proposed end-to-end learning
framework. For the reported example, the trained sampling

operator proposes to sample data along the main front as well
the main eddies (bottom right) to complement the nadir altimeter
data. As illustrated by the gradient norm fields (bottom row), the

additional measurements lead to an improvement of the
reconstruction of the gradient field. Quantitative results are in

Tab.3.

for a state-adaptive sampling operator. For any coarse condi-
tion ȳ,H(ȳ) shall comprise as few non-zeros positive values as
possible. Such a constraint may be enforced during the training
phase by adding to the training loss a new term based on the L1

norm of the sampling operator max(1/N
∑

n
‖H(ȳn)‖ − ξ, 0)

with ξ a scalar parameter to control the expected sparsity level.

Regarding the parameterisation of sampling operator H(·), we
consider a CNN architecture whose penultimate layer involves
a sigmoid activation to rescale the output between 0 and 1. To
enforce sparsity, the last layer is a thresholding layer with a
threshold set to 0.1, meaning than all values below 0.1 are set
to zero. Regarding the training phase, we proceed similarly to
the interpolation case-study except that we also learn sampling
operator H(·) in addition to operator Φ and solver Γ. We may
also account for available observations over a given subdomain
Ω and replaceH(ȳ) by max(H(ȳ),HΩ).

Here, we report OSSE experiments to learn a sampling pat-
tern to improve the reconstruction of a SSH field issued from
nadir along-track altimeter data. We use as conditioning vari-
able ȳ the optimally-interpolated (OI) SSH field, which typic-
ally resolves horizontal scales up to 100km. For 5-day-long se-
quences, we investigate two different parameterizations of the
sampling operator: a first one which constrains the sampling to
horizontal and vertical lines, a second one with no specific spa-
tial structure. To explicitly benefit from the available OI estim-
ation, we apply the considered variational framework (3) where
state variable x involves two components a coarse-scale com-
ponent x̄ and a fine-scale anomaly δx such that the SSH field is
x̄+ δx. Subsequently, the observation variable concatenates OI
reconstruction ȳ and the anomaly of the along-track nadir data
w.r.t. ȳ.
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Method Sampling % of data SSH ‖∇SSH‖
OI NA 1.34% 1.22% 7.24%

4DVarNN NA 1.34% 0.81% 4.95%
4DVarNN NA+A 5.40% 0.64% 4.20%
4DVarNN NA+B 5.90% 0.46% 3.70%

Table 3. Impact of the sampling design on reconstruction
performance for SSH fields: for different sampling designs, we
evaluate the reconstruction performance in terms of mean square
error of the SSH field and of the norm of the gradient of the SSH

field for the test dataset normalised by the variance of the
groundtruthed reference. As baseline, we consider an Optimal
interpolation using nadir along-track data. We then compare

three configurations of the proposed end-to-end learning using
nadir altimeter data solely, combined with a trained sparse

sampling design constrained to horizontal and vertical lines (A)
and combined with a trained sparse sampling design with no

additional constraint (B).

Quantitative results reported in Fig.3 show that sampling between
4% and 5% of additional SSH measurements when appropri-
ately selected through the trainable sampling operator can lead
to decreasing by a factor of 3-to-4 of the MSE for the SSH
and its gradient norm. As expected, the unconstrained sampling
operator selects more informative points for the reconstruction
than the sampling operator constrained to sampling rows and
columns. We illustrate these results for one example in Fig.4.
The end-to-end scheme has clearly learned that high gradient
points shall be preferentially sampled to improve the recon-
struction performance, as the trained sampling operator samples
points along the main SSH front as well as along the boundar-
ies of the main mesoscale eddies. These results support the
relevance of the OI estimate, used here as input of the sampling
operator, to indicate the areas of the true SSH field with the
more-energetic fine-scale structures.

4. DISCUSSION

In this work, we have investigated the application of end-to-end
learning schemes based on variational formulations for the ex-
ploitation of satellite ocean remote data, and more specifically
satellite altimetry data. Due to sensors’ characteristics, these
observation datasets are characterized by an irregular space-
time sampling of the sea surface and very large missing data
rates, typically about 95-99% on a daily scale for nadir alti-
meters. The proposed scheme naturally applies to irregularly-
sampled input data through a variational formulation. Such
variational formulations are classically used to solve inverse
problems and combine an observation term and a prior. Here,
we implement this variational formulation in a neural network
architecture, which also comprises a trainable gradient-based
solver of the inverse problem. For a given task, we can jointly
learn all the trainable components of the neural network ar-
chitecture to optimize some predefined performance criterion.
Through different case studies, we show that this generic end-
to-end learning scheme can reach state-of-the-art performance
for the reconstruction and forecasting of SSH fields.

The first two case-studies address the space-time interpolation
and short-term forecasting of SSH fields. In these case-studies,
we jointly learn a space-time prior and the solver of the recon-
struction problem the observation term being predefined through
the sampling patterns of the considered satellite altimeter set-
tings. Regarding space-time interpolation issues, our experi-
ments support the relevance of upcoming SWOT wide-swath

altimeter data to improve the reconstruction of sea surface dy-
namics for horizontal scales below 100km. We report a signi-
ficant gain w.r.t. the operational OI product (DUACS) with a
relative gain of about 20% in terms of mean square error. We
also demonstrate how the proposed framework applies to short-
term forecasting issues. Here, from a sequence of SSH fields,
we use an augmented representation space inspired by (Ouala
et al., 2020) and we recover up to 80% of the variance w.r.t.
the persistence model for a 4-day-ahead prediction. The aug-
mented representation combined with the ability to consider a
sequence of daily inputs clearly contribute to the improvement
of the forecasting performance. In these different case-studies,
the training loss is stated as the reconstruction or forecasting
performance on the entire domain assuming we are provided
with a groundtruthed gap-free dataset. Future work will in-
vestigate how we may adapt this training procedure to training
losses only computed over observed points. We expect the res-
ults presented in our experiments to extend to these real-word
configurations if we can gather sufficiently large observation
data to compensate for a subsampling of the observed points.
Future work shall also investigate how the proposed framework
may apply on larger regions, typically the global ocean or an
ocean basin. One key question is the ability to learn priors
which apply to all upper ocean regimes (Klein et al., 2009).

We investigate an other original case study through the learning
of sampling patterns with a view to improving the reconstruc-
tion performance issued from satellite altimeter data. It comes
to complement the considered variational model with a train-
able observation operator. We design a sampling operator under
sparsity constraint such that only a fraction of the domain is ob-
served. Besides, this sampling operator may be conditioned by
an auxiliary variable, here a low-resolution version of the SSH
field. Through numerical experiments, we show that we may
predict where to sample additional SSH measurements which
may complement nadir altimeter data to significantly improve
the reconstruction of the SSH field. These experiments may
provide the basis for investigating context-adaptive observing
systems which could adapt their sampling design based on a
coarse prediction or forecast, or even a proxy, with a view to
optimizing a predefined reconstruction and/or forecasting per-
formance.

We believe the proposed scheme may be of broad interest bey-
ond satellite altimetry and ocean remote sensing to earth obser-
vation and remote sensing applications. Similarly to the case-
studies illustrated in this paper, it provides a generic framework
to address reconstruction and forecasting problems. To broaden
the application range, future work shall further investigate train-
able observation operators, including when the observed vari-
able is not directly a noisy version of the variable of interest.
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