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Enhancement of SAR Speckle Denoising Using the
Improved Iterative Filter

Mohamed Yahia , Tarig Ali , Mohammad Maruf Mortula , Riadh Abdelfattah, Senior Member, IEEE,
Samy El Mahdy, and Nuwanthi Sashipraba Arampola

Abstract—The recent advancement in synthetic aperture radar
(SAR) technology has enabled high-resolution imaging capability
that calls for ef�cient speckle �ltering algorithms to preprocess
radar imagery. Since the introduction of the Lee sigma �lter in 1980,
the various versions of the minimum mean square error (MMSE)
�lter were developed, focusing essentially on how to estimate the
processed pixels. For instance, the iterative MMSE (IMMSE) �lter
that is commonly initialized by the boxcar �lter maintains the ini-
tially �ltered homogeneous areas and corrects the initially blurred
spatial details after a few iterations. In this article, an effort is made
to enhance the performance of the IMMSE �lter in terms of speckle
reduction and spatial detail preservation by re�ning the choice of
the initial �lter, optimizing its parameters, and improving the esti-
mation of local statistics. Compared with the basic version, results
showed that the improved iterative �lter considerably enhanced
the �ltering criteria. When the improved iterative �ltering process
was initialized by the nonlocal mean �lter, for few iterations, the
�ltering performances were improved. Simulated, airborne (ESAR,
Oberpfaffenhofen Germany) and spaceborne (Sentinel 1, Palm
Jumeirah Dubai UAE) SAR data were used to assess the �ltering
performances of the studied �lters.

Index Terms—Iterative minimum mean square error (IMMSE)
�lter, nonlocal means �lter, synthetic aperture radar (SAR),
speckle.

I. INTRODUCTION

T HE synthetic aperture radar (SAR) presents many beneÞts
over optical remote sensing [1], principally the all-day and

all-weather acquisition capability. SAR images have been used
for a wide range of applications, such as disaster monitoring
and forestry, agriculture. However, SAR images are affected by
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the multiplicative speckle noise, which degrades its radiometric
quality and reduces the performances of information extraction
techniques. For these reasons, several methods have been in-
troduced to reduce speckle. Such methods, however, need to
carefully avoid spoiling useful information in the images, such
as a local mean of backscatter, point targets, and textures.

The multilooking process reduces speckle in SAR images
by averaging the intensities of neighboring pixels [2]. The ma-
jor drawback of this method is the degradation of the spatial
resolution. Many other despeckling Þlters have been developed
to avoid this deÞciency to a certain degree by using different
estimation domains, including spatial [3], wavelet [4], and ho-
momorphic wavelet [5], [6].

Nonlocal (NL) means Þltering is one of the patch-based meth-
ods, where the pixel selection for Þltering can be outstretched to
the global neighborhood instead of restricting the local Þltering
window [7]. In fact, the main idea here is forming a local
convolution mask, where each pixel value is proportional to
the similarity between the central and each of the off-central
pixels. Such similarity has been estimated using a number of
approaches, among them, is the Euclidean distance [7]. Zhong
et al. [8] applied the NL means (NLM) to Þlter SAR images by
adapting the use of Euclidean distance to multiplicative noise.
Recently, Vitaleet al. [9] proposed an NL SAR despeckling
Þlter that makes use of optical imagery. The probabilistic-patch-
based Þlter aimed to introduce a suitable patch-based weight
to generalize the Euclidean-distance-based weight used in the
NLM algorithm [10]. These Þlters improved signiÞcantly the
Þltering performance of SAR images. However, they present
the disadvantage of huge complexity and high computing cost.

The total-variation-based methods [11] have been extensively
applied for SAR image speckle reduction due to their efÞ-
ciency and the ability to preserve spatial details. Wavelet-based
algorithms [4], as well as the methods based on the second-
generation wavelets [12], bandelets [13], shearlet [14], etc.,
constituted an important group of speckle Þltering techniques.
With increased complexity, these techniques provided better
spatial detail preservation; however, artifacts can be generated.
Furthermore, these techniques apply the logarithmic transform
to SAR images data so that noise became additive. A bias-
compensation step is necessary to correct the non-Gaussianity
in log-space. Also, several techniques based on a Bayesian NL
framework have been developed for denoising SAR images [15].
The NL principle has been successfully used to despeckle in the
wavelet domain [16], [17]. Martinoet al.[18] extended the block
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matching three-dimensional Þlter by representing the similarity
measure among blocks of pixels according to Zhaoet al. [11].
Recently, Pennaet al.addressed the NLM Þltering by replacing
the Euclidean distance with stochastic distances in the Haar
wavelet domain [19].

The IDAN Þlter [20] was introduced as an adaptive technique
based on local stationary assumption. A Òwindow growingÓ
technique has been employed to constitute an adaptive neighbor-
hood for each pixel with an aggregation test that combines the
available intensity component information in order to measure
the similarity between the central and off-center pixels.

The minimum mean square error (MMSE)-based Þlters that
account for the local statistics of the image have been broadly
applied in SAR speckle Þltering. Since the introduction of the
Lee sigma Þlter in early 1980 [21], [22], many enhanced versions
have been proposed in the literature, such as Kuan [23], Frost
[24], and the improved Lee [25], [26]. Many of these speckle Þl-
ters have been implemented in GIS and remote sensing software
due to their effectiveness in speckle reduction, simplicity, and
low computational demand. The MMSE estimation is switched
by maximuma posteriori[27], [28].

An iterative MMSE (IMMSE) Þlter has been introduced [29],
[30]. The IMMSE Þlter is commonly initialized by the boxcar
Þlter. Then, after a few iterations, the IMMSE method maintains
the Þltered homogeneous areas and corrects the initially blurred
spatial details. Hamrouniet al.extended the use of the IMMSE
to polarimetric SAR (PolSAR) images [31].

In this article, an effort is made to enhance the performance
of the IMMSE Þlter. The improvements consisted in the choice
of the initially Þltered image, the parameter optimizing, and the
estimation of the local statistics.

The rest of this article is organized as follows. Section II
reviews the related work and then presents the proposed im-
proved iterative Þlter. The results and discussions are shown in
Section III. Finally, Section IV concludes this article.

II. RELATED WORK, MOTIVATIONS, AND PROPOSEDFILTER

A. Related Work

The principle of spatial-domain SAR speckle Þltering proce-
dures includes the following.

1) The selection of homogeneous pixels.
2) The estimation of the Þltered pixel value within the se-

lected pixels.
The main methods that have been used for the second step are

mean averaging, median, and MMSE [2], [7]Ð[8], [20]Ð[31]. In
this article, a new formulation of the IMMSE Þlter is proposed.

The intensity pixely(i) of a SAR image is affected by a
multiplicative noise [2]

y (i ) = x (i ) � (i ) (1)

wherex(i) is the noise-free pixel, and� (i) is the speckle noise
with unit mean and standard deviation� � . The objectives of
SAR speckle Þltering are

1) reduce speckle in extended homogeneous areas. The op-
timal scenario is to average all pixels (i.e.,�x(i ) = ȳ(i )),

2) retain the spatial details in structured areas. The Þltered
pixel �x(i )should maintain the value of the original pixel
(i.e., �x(i ) = y(i )).

In general, a Þltered pixel veriÞes

�x(i ) � [y(i ), ȳ(i )] or �x(i ) � [ȳ(i ), y(i )] (2)

considering that the pixel intensityy(i) may be higher or lower to
the local mean. In the rest of this article, only�x(i ) � [ȳ(i ), y(i )]
will be written.

In the MMSE Þlters [21], [22], [25], [26], the Þltered pixel
�x(i ) is expressed as

�x(i ) = ȳ(i ) + b(i ) (y(i ) Š ȳ(i )) (3)

where

b(i ) =
var (x (i ))
var (y (i ))

(4)

and

var (x (i )) =

�
var (y (i )) Š ȳ2(i )� 2

�

�

(1 + � 2
� )

(5)

whereȳ(i ) and var(y(i )) were the mean and the variance of
y(i ), respectively. In practice, the parameterb can have negative
values. In these cases, it is set to zero.

In homogeneous areas,b(i) = 0, so�x(i ) = ȳ(i ), whereas in
heterogeneous areas (e.g., point target),b(i) = 1 and�x(i ) = y(i ).
Generally, 0< b(i) < 1 and�x(i )) � [ȳ(i ), y(i )].

B. Motivations and the Proposed Improved Iterative Filter

The essence of the IMMSE method is to scan the dynamic
range of�x(i ) in [y(i ), ȳ(i )] by the following iterative Þltering
procedure [29]Ð[31]:

�x0(i ) = ȳ(i ), (6)

�xk+1 (i ) = �xk (i ) + b�
k (i ) (y(i ) Š �xk (i )) . (7)

If 0 < b�
k (i ) < 1, then�x� (i ) = y(i ) [sincey(i ) is the solution

of (7)] and �xk (i )) � [ȳ(i ), y(i )] (see Appendix). The perfor-
mance of the IMMSE Þlter depends on the choice of the initial
Þltered image�x0, the choice of the parameterb�

k (i ), and the
precise estimation of the local statistics to computeb�

k (i ). This
article contributes to the improvement of the basic IMMSE Þlter
as described below.

1) Choice of Initial Filtered Image�x0.: Since the speckle
reduction level of the IMMSE Þlter does not surpass that of
the original Þlter [29]Ð[31], the initial Þlter must ensure a very
high speckle reduction level. However, when spatial details are
extremely blurred, the IMMSE Þlter requires more iterations
to recover the spatial information, which reduced the speckle
Þltering level in homogeneous areas. In [29]Ð[31], the boxcar
Þlter is utilized as an initial Þlter (i.e.,�x0(i ) = ȳ(i )). In this
article, the NLM has been implemented as initially applied Þlter.

2) Choice of the Parameterb�
k (i ): In the IMMSE Þlter, the

key parameter wasb�
k (i ). In fact, this parameter controls the

performance of the Þltering process as the parameterb(i) in
(3). Hence, and in order to ensure robust speckle Þltering,
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this parameter must demonstrate the following three important
properties:

1) 0 < b�
k (i ) < 1 unless, �x� (i ) �= y(i ) and �xk (i )) /�

[ȳ(i ), y(i )] (see Appendix),
2) b�

k (i ) � 0 in homogeneous areas,
3) b�

k (i ) � 1 in heterogeneous areas.
Hence, by running few iterations (i.e.,N iterations), the pro-

posed Þltering process maintained the Þltered homogeneous
areas (i.e.,�xN (i ) = ȳ(i ) sinceb�

k (i ) � 0) and preserved spatial
details (i.e.,�xN (i ) = y(i ) sinceb�

k (i ) � 1).
By combining (4) and (5), we have

b(i ) =
var (x (i ))

((1 + � 2
� )var ( x (i )) + ȳ2 (i ) � 2

� )
. (8)

In [29] and [31],x(i ) is substituted by its estimate�x1(i ) and
ȳ(i ) by �x0(i ). Then, an empirical expression of the parameter
b�

k (i ) was given by

b�
k (i ) =

var (�xk (i ))
((1 + � 2

� )var (�xk (i )) + �x2
k (i ) � 2

� )
. (9)

In [30], a theoretic expression analog to (9) is developed.
In practice, unlike the parameterb(i ) in (2), it can be seen that
0 < b�

k (i ) < 1. For one look image, expression (9) can be written
as follows:

b�
k (i ) =

var(�x k ( i ))
�x 2

k�
2var(�x k ( i ))

�x 2
k

+ 1
� . (10)

By substituting�xk (i ) by its mean̄�xk (i ), the new expression
become

b�
k (i ) =

CV2
�x k

(i )
�
2CV2

�x k
(i ) + 1

� (11)

where

CV �x k (i ) =
std (�xk (i ))

�̄xk
(12)

wherestd() is the standard deviation. Hence, the coefÞcient
variation CV is employed to estimate the variability of the pixels
instead of the variance. The local CV gives the edges, textures,
and points a greater value than the pixels in homogeneous region.
The parameterb�

k (i ) can be written as

b�
k (i ) = f 1

�
CV2

�x k

�
(13)

where

f 1 (x) =
x

(2x + 1)
. (14)

From the numerical point of view, we can see that
1) the parameterb�

k (i ) that controls the speed of convergence
is controlled by the CV (higher convergence in spatial
details),

2) the objective of the functionf1 is to normalizeCV2
�x k

between 0 and 1 to ensure the convergence of the iterative
method (numerical propertyi)

Fig. 1 shows the curve ofb�
k (i ) as a function ofCV �x (i ) of

(11) (dashed line). It can be seen that0 < b�
k (i ) < 0.5 << 1.

These low values demonstrate slow convergence in heteroge-
neous areas, which promoted the decrease in smoothness in

Fig. 1. Curves ofb� as a function of CV.

homogeneous areas [29]Ð[31]. The use of2 × b�
k (i ) alleviated

this drawback (see circled line). However, it ensured slow con-
vergence to the value 1. To address this problem, the authors
proposed the following function:

f 2 (x) = tanh( x) (15)

then

b��
k (i ) = tanh

�
CV2

�x k
(i )

�
(16)

where tanh is the hyperbolic tangent used to ensure0 < b��
k (i ) <

1. Fig. 1 plots the curve ofb��
k (i ) as a function ofCV �x (i ) of

(16) (solid line). It can be seen thatb��
k (i ) turned to 1 rapidly,

which addressed the numerical limitations of (11). However, in
practice, due to the Þltering action, the dynamic range ofCV �x (i )
is low, which implied difÞculty to discriminate homogeneous
and heterogeneous areas and slow convergence. To resolve this
deÞciency, the authors considered the following expression:

b��
k (i ) = tanh

�
CV2

�x k
(i ) CV 2

y (i )
�

(17)

whereCVy (i ) � [1, � ] is the coefÞcient variation of the original
pixel y(i). It can be easily veriÞed that in the homogeneous
areas,CV �x (i ) � 0 andCVy (i ) = 1 , sob��

k (i ) � 0, whereas in
heterogeneous areas,CV �x (i ) is high, CVy (i ) is higher, and
b��

k (i ) � 1. The main drawback of this solution is that the statis-
tics are computed from the original speckled image. However,
in many cases of SAR data (e.g., initially multilooked images),
even in heterogeneous areas,CVy (i ) < 1 and CV �x (i ) << 1
so b��

k (i ) << 1. In these cases, the iterative Þltering ensured
slow convergence to the original value. To resolve this problem,
the expression inside tanh in (17) has been normalized by the
parameterC

b��
k (i ) = tanh

�
CV2

�x k
(i ) CV 2

y (i )

C

�

. (18)

Ideally, in homogeneous areas, when the process converge to
y(i), then

CV2
�x (i ) CV 2

y (i )

C
=

CV2
y (i ) CV 2

y (i )

C
=

1

C(ENL 0 (i )) 2 .

(19)
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By equalizing (17) and (18)

1

C(ENL 0 (i )) 2 = 1 (20)

then

C =
1

(ENL 0 (i )) 2 (21)

whereENL0(i ) is the equivalent number of looks of the original
imagey(i ) estimated in a homogenous area

ENL0 (i ) =
(ȳ (i )) 2

var(y (i ))
. (22)

In single look SAR data,C = 1, so that (17) and (18) are
equivalent.

3) Estimation of the Local Statistics:The original IMMSE
Þlter [29]Ð[31] adaptively estimates the parameterb�

k (i ) based
on the local statistics using a square window. This choice reduced
the complexity of the algorithm but some deÞciencies can be
noticed. For example, around boundaries between homogeneous
and heterogeneous areas, the use of local square window overes-
timated the parameterb�

k (i ) in the homogeneous part (due to the
presence of high variability in the window) and underestimated
it in the heterogeneous part (due to the presence of homogeneous
pixels in the window). Hence, pixels used for the estimation of
the parameterb�

k (i ) are selected by analogy to the NL Þltering
principle. Each pixel in the search area gets a weight that comes
from comparing its patch (neighborhood pixel that surrounds
the candidate pixel) with the centered pixel patch. Then, and
in order to reduce nonsimilar pixels, the authors considered
only half pixels of the search area with the strongest patches.
This strategy helped in reducing the nonhomogeneous pixels
and increased the accuracy of estimatingCV �x (i ) andCVy (i ).

III. EXPERIMENTAL RESULTS

To study the efÞciency of the implemented Þltering methods,
simulated, airborne, and spaceborne SAR images were used (see
Fig. 2). The authors considered the homogeneous image H to
evaluate the ability of speckle Þlters on speckle reduction [see
Fig. 2(a)]. The study also considered the heterogeneous area T to
assess the ability of the proposed speckle Þlters on spatial detail
preservation [see Fig. 2(b) and (c)]. In the second simulated im-
age [see Fig. 2(d) and (e)], the authors simulated three speckled
extended homogeneous areas Z1, Z2, and Z3. In addition, two
types of deterministic targets (no speckle) characterized by high
backscattering power have been introduced. The Þrst represents
six-point targets, and the second represents two lines. The test
airborne SAR was the C-bandhh image of Oberpfaffenhofen
area, Germany acquired by ESAR Airborne sensor [see Fig. 2(f)
and (g)]. The spaceborne data were the Sentinel 1 C-bandvvSAR
image of Palm Jumeirah, Dubai, UAE [see Fig. 2(h) and (i)].

A. Implemented Filters

1) Boxcar[2]: The value of the Þltered pixel was the mean
of pixels of a moving windowW = K × K.

2) Improved Lee Þlter[25], a moving windowW1 was ap-
plied. Pixels within the sigma range(n1y(i ), n1y(i )) were
included in computing�x(i ) in (2), wheren1, n2 deÞne the
bounds of the sigma range.

3) NLM Þlter[8]. The NLM estimate�x can be deÞned in [32]

�xNLM (i ) =
�

j � �

w (i, j )y (j ) (23)

where� is the research area, the weightw(i, j ) denoted the
similarity between the patches� i and� j

w(i, j ) =
1

Z (i )
exp

	
Š

d(� i , � j )
h



(24)

whereZ(i) is the normalization factor, andh was the smoothing
factor

Z (i ) =
�

j

exp
	

Š
d(� i , � j )

h



. (25)

For one look SAR speckle Þltering,d(� i , � j ) can be ex-
pressed as [8]

d (� i , � j ) =
�

m � �

G (k)
(zi (m) Š zj (m))2

ȳi
(26)

where� represent the set of pixels in the patch,ȳi was the mean
value ofyi in the patch� i , andG was the standard Gaussian
kernel function.

4) Practical implementation of the improved iterative Þlter.
For a given SAR imagey
a) compute the parameterC in (18).
b) compute�x0 image by applying a Þlter ensuring high

speckle reduction level. Since the ENL of the proposed
Þlter decreases with respect to the increase in the
iterations [29]Ð[31], to ensure high speckle reduction
level, the speckle reduction level (i.e., ENL) of the
original Þlter should be sufÞciently high.

For a given pixel
c) deÞne the search window� 1. From the selected pixels

of the Þltered image�x0, compute the similarity weights
using (25) (search window� 1, patch� 1). Then, discard
half pixels having the lowest similarity coefÞcient values.
ComputeCV �x (i ) using the retained pixels,

d) from the selected pixel of the original imagey, discard
half pixels and computeCVy (i ) using the same process
in c),

e) computeb��
k (i ) using (18),

f) update the Þltered pixel using (7),
g) apply the process for all pixels of the image,
h) repeat c)Ð g)N iterations.N is an input parameter intro-

duced by the user to control the speckle reduction and
spatial detail preservation.

5) The basic IMMSE Þlter[29]Ð[31].
The authors applied the iterative process using the boxcar

Þlter as an initial Þlter. The parameterb�
k (i ) was given by (9).

The variance was estimated using a square windowW2.
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Fig. 2. (a) Simulated H zone (mean(H)= 1, var(H)= 1, ENL0 = 1). (b) Heterogeneous T zone (T(x, y)= 50, where (x, y) are included in the introduced
features), extended areas of mean 1 and 2. (c) Ground truth of T zone. (d) Ground truth GT of the simulated data 2 (GT(Z1)= 0.09, GT(Z2)= 4.12, GT(Z3)=
3.46, GT(lines)= GT(points)= 100). (e) Speckled image var(Zi)= Zi2), ENL0 = 1. (f) hhOberpfaffenhofen area, ENL0 = 1. (g) Ground truth [34]. (h)vvimage
Palm Jumeirah, ENL0 = 18.5. (i) Ground truth [35]. Circular, triangular, and rectangular areas were used to assess speckle reduction (i.e., ENL), spatial detail
preservation (i.e., MSE or EPD-ROA), and visual inspections, respectively.

B. Parameter Setting

Boxcar:W = 9 × 9. Improved Lee Þlter:W1 = 11 × 11,n1

= 0.043,n2 = 4.840. NLM1 (normal use):� = 7 × 7, � =
19 × 19, h = 5 (sinceENL 0 = 1 ) for simulated and AirSAR
data, whereash = 2 for spaceborne data (sinceENL0 = 18.5).
NLM2 (high-level smoothing action):h = 2 or 5,� = 11× 11,
� = 27 × 27. Original IMMSE: initial Þlter, boxcarW = 9 ×
9, W2 = 7 × 7. Improved iterative Þlter: initial Þlter, NLM1 or
NLM2, � 1 = 7 × 7, � 1 = 3 × 3.

C. Evaluation Criteria

In addition to visual inspections, quantitative parameters have
been used to evaluate the performance of the studied Þlters. The
authors chose the ENL to evaluate speckle reduction level

ENL ( i ) =

�
�̄x (i )

� 2

var(�x (i ))
. (27)

To illustrate the algorithm validity in spatial detail preserving
of simulated images, the authors used the mean square error
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Fig. 3. Improved iterative1 Þltred T images. (a) Initial Þlterd image NLM1.
(b) N = 1. (c)N = 3. (d)N = 100.

(MSE). The MSE between the Þltered and the noise free image
is given by

MSE (i ) =
1

M

M�

l =1

(�x (l ) Š x (l)) 2 (28)

whereM is the number of processed pixels. For real SAR images,
the authors used the edge preservation degree based on the
ratio of averages (EPD-ROA) [33]. The EPD-ROA in horizontal
direction is

EPD Š ROAH (i ) =

�
m,n |�x (m, n) / �x (m, n + 1) |

�
m,n |y (m, n) /y (m, n + 1) |

(29)

wheremandn are thexycoordinates of the pixel in the selected
zone, respectively. EPD-ROAV is obtained by substituting in
(29) the indexes (m, n + 1) by (m + 1, n). For the original
image, EPD-ROA= 1. When the EPD-ROA is closer to one, it
means better ability of spatial detail preservation.

D. Study of the Proposed Filter

Fig. 3 displays the Þltered simulated images using the im-
proved iterative Þlter for various iterations. It can be observed
that the original Þlter (i.e., NLM1) degraded the spatial details
partially. The application of the iterative Þlter, for one iteration,
repaired this deÞciency while preserving the high speckle Þlter-
ing level in homogeneous areas. After three iterations, spatial
details were afÞned. After 100 iterations, the process converged
to the original image (i.e.,y).

1) Choice of Initial Filter: Fig. 4 displays the Þltered image
using the improved iterative Þlter for various iterations using
the boxcar as an initial Þlter. High blurring effects in the Þltered
images can be observed. Compared with Fig. 3, these blurring
effects persisted more. Hence, initializing the iterative Þlter by
the NLM provided better results than initializing by the boxcar.

2) Choice of the ParameterbÕ:Fig. 5(a) displays the ENL of
zone H as a function of the MSE between the Þltered image�x
and the speckled imageyof the zone T using the original and the
improved iterative techniques. As expected, the Þltering process
converged to the original image (i.e.,�x = y), where ENL= 1
and MSE= 0. It can be observed that the improved iterative gave

Fig. 4. Original IMMSE Þltred T images. (a) Initial Þlterd image: boxcar 9×
9. (b)N = 1. (c)N = 3. (d)N = 100.

Fig. 5. Results of the IMMSE Þlter (N = 10). (a) ENL(H zone) versus MSE(T
zone) of original and improved IMMSE. (b) ENL(A zone) versus EPD-ROAV
(B zone) of original and improved iterative methods. Both Þlters were initialized
by boxcarW = 9 × 9, W2 = 7 × 7. They differ from each other only by the
expression ofbÕ.

Fig. 6. (a) Improved iterative1 (local staistics estimated using a square window
W2 = 7 × 7, N = 3). (b) Improved iterative1,N = 3.

better compromise between speckle reduction (higher ENL)
and spatial detail preservation (lower MSE) than the original
IMMSE. Fig. 5(b) shows the ENL of zone C as a function of
the EPD-ROAV of zone D. It can be observed that the Þltering
process converged to the original pixel value (i. e.�x = y) where
ENL = 1 and EPD-ROAV= 1. The improved iterative gave
better compromise between speckle reduction (higher ENL) and
spatial detail preservation (higher EPD-ROA) than the original
version of the Þlter.

3) Estimation of the Local Statistics:Fig. 6(a) shows the
Þltered image using the improved iterative1 (N= 1). To estimate
the local statistics, the authors used a square widowW2 = 7 × 7
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Fig. 7. Scatter plots of standard deviation versus mean using the simulated
single look SAR image H [see Fig. 2(a)].

as the original IMMSE. It can be observed that lines and points
are enhanced considerably. However, in the homogeneous areas
around the lines and the points (which should be maintained
smoothed), since the window contained pixels with high reßec-
tivity (i.e., b��

k (i ) � 1), the improved iterative Þlter converged to
the original value too. By adopting the proposed strategy, this
problem was mitigated [see Fig. 6(b)].

4) Preservation of the Multiplicative Noise Model:Fig. 7
displays scatter plots of standard deviation versus mean using a
simulated single look HH SAR image [see Fig. 2(a)]. The linear
dependence between the standard deviation versus the mean is
noticiable for the original (i.e.,y(i)) and the Þltered (i.e.,�x1(i ))
data. Hence, the multiplicative nature of the noise for the Þltered
data is still valid.

E. Comparison Using Simulated Data

Fig. 8 displays the performances of the studied Þlters on the
simulated data. As expected, the boxcar Þlter provided good
speckle reduction, but it degraded spatial details. On the other
hand, the improved Lee Þlter preserved better spatial details
at the cost of speckle reduction. The original IMMSE gave
high speckle reduction level but altered the lines. The NLM1
provided a better balance between speckle reduction and detail
preservation. The improved iterative1 in Fig. 8(f) maintained
the high speckle reduction level of NLM1 and enhanced con-
siderably the lines and the points. The NLM2 provided the
highest speckle reduction level but compared with NLM1, it
blurred the spatial details slightly [see Fig. 8(d)]. The improved
iterative2 maintained the high speckle reduction level of NLM2
and corrected the blurring effects.

Table I displays the ENL of zone (A) and the MSE between
the Þltered and the cleaned image (zone B). It can be seen that
the improved iterative1 maintained the high speckle reduction
level as the initially applied Þlter (i.e., NLM1) and improved
the spatial detail preservation (ENL= 357� 365 and MSE=
0.12<< 1.97). The same results are observed concerning NLM2
and the improved iterative2 (ENL= 560 � 575 and MSE=

TABLE I
PERFORMANCES OF THEFILTERS USING SIMULATED DATA

The bold values represent the best values.

TABLE II
PERFORMANCES OF THEFILTERS USING AIRBORNEDATA

The bold values represent the best values.

0.15<< 15.43). It is interesting to observe that the improved
iterative2 performed better than NLM1 (ENL= 560 >> 365
and MSE= 0.15<< 1.97).

F. Comparison Using AirSAR Data

Fig. 9 shows the Þltered zone E of the AirSAR image. As
for simulated data, the boxcar Þlter provided good speckle
reduction while degrading spatial details. The original IMMSE
increased the Þltering performances. For NLM1 and NLM2,
spatial details were improved considerably. Compared with
NLM1, the blurring effect introduced by NLM2 was noticeable
(see circled areas).The improved iterative1 and the improved
iterative2 enhanced considerably spatial detail preservation. For
example, the details showed by the circles, the squares, and the
arrows were clearly enhanced. The improved Lee Þlter exhibited
excellent spatial detail preservation.

Quantitative results in Table II conÞrmed visual inspections
where the improved iterative Þlter maintained the high speckle
reduction level of the initially applied Þlter and enhanced spatial
details. It can be seen that the improved iterative2 outperformed
NLM1 in terms of speckle reduction and spatial detail preserva-
tion. The improved Lee gave excellent spatial detail preservation
at the cost of speckle Þltering.

G. Comparison Using Spaceborne Data

Fig. 10 displays the performances of the studied Þlters on the
Sentinel 1 SAR image of Palm Jumeirah in Dubai, UAE. Results
showed that the boxcar gave weak spatial preservation since
structures were considerably blurred. The improved Lee Þlter
ensured better spatial detail preservation. The original IMMSE
increased the Þltering performances. For NLM1 and NLM2,
spatial details were improved considerably. The improved itera-
tive1 and improved iterative2 enhanced considerably the spatial
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Fig. 8. Filtered simulated images. (a) Boxcar 9× 9. (b) Improved Lee 11× 11. (c) NLM1. (d) NLM2. (e) Original IMMSE,N = 5. (f) Improved iterative1,N
= 1. (f) Improved iterative2,N = 3.

Fig. 9. Filtered E zone. (a) Original. (b) Boxcar 9× 9. (c) Improved Lee 11× 11. (d) NLM1. (e) NLM2. (f) Original IMMSE,N = 5. (g) Improved iterative1,
N = 1. (h) Improved iterative2,N = 2.
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Fig. 10. Filtered Palm Jumeirah images. (a) Original. (b) Boxcar 9× 9. (c) Improved Lee 11× 11. (d) NLM1. (e) NLM2. (f) Original IMMSE,N = 2.
(g) Improved iterative1,N = 1. (h) Improved iterative2,N = 3.
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Fig. 11. Filtered G zone. (a) Original. (b) Boxcar 9× 9. (c) Improved Lee 11× 11. (d) NLM1. (e) NLM2. (f) Original IMMSE. (g) Improved IMMSE1.
(h) Improved IMMSE2.

Fig. 12. Filtered H zone. (a) Original. (b) Boxcar 9× 9. (c) Improved Lee 11× 11. (d) NLM1. (e) NLM2. (f) Original IMMSE. (g) Improved iterative1.
(h) Improved iterative2.

Fig. 13. Filtered I zone. (a) Original. (b) Boxcar 9× 9. (c) Improved Lee 11× 11. (d) NLM1. (e) NLM2. (f) Original IMMSE. (g) Improved iterative1.
(h) Improved iterative2.

details while maintaining the high speckle reduction level of
NLM1 and NLM2, respectively. To assess the spatial detail
preservation more precisely, in Figs. 11Ð13 the zoomed Þltered
areas G, H, and I, respectively, are plotted. It can be observed
from Fig. 11 that the point target that is completely smoothed by
NLM2 and partially smoothed by NLM1 was enhanced using
the improved iterative Þlter. Fig. 12 displays a part of a palm
branch which is characterized by two rows of tall buildings
separated by a road. The darks part is the sea [see ground truth in
Fig. 2(e)]. It can be observed that the dark line is highly smoothed
by NLM2 and partially smoothed by NLM1. This information
was retrieved using the improved iterative Þlter. In addition,
the proposed method increased the contrast between the sea
and the buildings while maintaining the high speckle reduction
level in the sea. The authors observed that in the sea zones, the
original IMMSE converged to the original speckled values. This
problem was surmounted using the improved iterative Þlter. In
Fig. 13, zone I that represents a part of the port has been zoomed
(see ground truth). The authors observed again that the boxcar
smoothed the bright line. NLM1 and NLM2 gave better spatial
detail preservation. For the proposed improved iterative Þlter,
the line was considerably enhanced while preserving the high
speckle reduction level of NLM1 and NLM2.

Quantitative results in Table III conÞrmed visual inspections
where the improved iterative Þlter maintained the ENL of the
initially applied Þlter and enhanced the EPD-ROA. It can be
seen also that the improved iterative2 outperformed NLM1 in
terms of speckle reduction (ENL= 1602 > 791) and spatial
detail preservation (EPD-ROA= 0.9816> 0.9695).

Fig. 14 displays the probability density functions (pdf) of the
Þltered homogeneous area F. It can be seen that the original

TABLE III
PERFORMANCES OF THEFILTERS USING SPACEBORNEDATA

The bold values represent the best values.

IMMSE, the improved iterative1 and the improved iterative2
Þlters gave the same speckle reduction level as the initially
applied Þlters, i.e., boxcar, NLM1 and NLM2, respectively, since
their pdfs Þt well.

H. Discussion

The performance of the improved iterative Þlter depended
essentially on the choice of the initial Þlter, the choice of the
parameterb�

k (i ), and the precise estimation of the local statistics.
The improved iterative Þlter is not an independent Þlter since its
performances depended on the choice of the initial Þlter. By
initially applying a Þlter (e.g., the NLM1), the enhancement of
SAR speckle denoising using the improved iterative Þlter can
be achieved in two ways.

1) The normally applied Þlter (e.g., NLM1) can initialize the
improved iterative. Then, by running a few iterations, the
speckle reduction level was maintained, and the spatial
detail preservation was enhanced.
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Fig. 14. pdf of the Þltered homogeneous area F.

2) Initializing by higher speckle reduction level using the
same Þlter (e.g., NLM2). Then, by running a few itera-
tions, the improved iterative produced better Þltering per-
formances than the normally applied Þlter (e.g., NLM1) in
terms of speckle reduction and spatial detail preservation.

In the improved iterative technique, the number of iterations is
an input parameter deÞned by the user to control the smoothness
degree. Low number of iterations promotes high-level speckle
reduction, whereas a high number of iterations promotes high
spatial detail preservation. By varying the number of iterations,
the user could choose the best compromise between speckle
reduction and spatial detail preservation depending on the scene
variability of the original image. The development of an auto-
matic stop criterion depending in the pixel statistics constitutes
an interesting research topic.

In (18), the tanh function is applied to normalize the CVs
between 0 and 1 (i.e.,0 < b�

k (i ) = tanh(CV) < 1). Unless
the process will diverge (i.e.,�x� (i ) = � ). �x� (i ) = � . Other
functions ensuring better results could be naturally used. By
choosing the tangent hyperbolic function in (13), the MMSE
principle is disregarded. This important modiÞcation is proposed
to overcome the numerical limitations of the IMMSE-based
function (11).

This procedure is not speciÞc to the NLM and could be
extended to other Þlters.

It is important to mention that if initialized by the clean image
x, the improved iterative preserved it. In fact, in homogeneous
areas,b��

k (i ) = 0 , and in heterogeneous areas,x(i) = y(i). So that,
the second part of (7) is equal to zero.

The success of the improved iterative procedure is based on
the choice ofb�

k . In Fig. 5(b), the authors plotted the ENL
versus EPD-ROA for the ideal case. The authors observed that
the proposed parameterb��

k (i ) Þts well the ideal case but needs
further ameliorations. This issue will be deeply investigated in
our future researches.

To estimate the local statistics of the pixels, the authors opted
to preserve half pixels with strong patches in an NL search
window. Unlike the NLM Þltering, the objective here was not
to select homogeneous pixels but the accurate estimation of

the local statistics (i.e., means and variances). For example,
considering a homogeneous area containing a point target, when
processing the homogeneous pixels, the point target was dis-
carded. Then, the CV was more accurate and close to zero.
On the other hand, for the point target, when discarding half
of homogeneous pixels, the variance augmented which led to
higher CV value. As a result, the homogenous area and the point
target had different statistics, which were not the case for a square
window [see Figs. 6 and 12(f)]. This strategy is simple and need
further improvements to afÞne local statistics estimation.

The computational complexity of the proposed method isO(N
× Nx × Ny × N1 × N2), whereNx × Ny is the size of the image,
andN1 × N2 is the dimension of the search area� 1.

IV. CONCLUSION

In this article, the authors investigated the enhancement of
SAR speckle Þltering using the improved iterative Þlter. The
effort was mainly focused on the choice of the parameter
b�

k (i ), which traduced the variability of the processed pixels.
Two improvements were proposed to estimate this parameter:
Estimation the parameterb�

k (i ) using the coefÞcient variation
rather than the variance and estimation of the statistics on an NL
strategy instead of local square window. In addition, it has been
demonstrated that the initial Þltered image had a great impact on
the Þltering performances. Hence, by adequately choosingb�

k (i )
and the number of iterations, the proposed improved iterative Þl-
ter can enhance the Þltering performances of the initially applied
Þlter. In future research, the authors will focus on optimizing the
application of the proposed iterative Þlter to SAR and PolSAR
speckle Þltering.

APPENDIX

Let consider the functionf

f (x) = b(y Š x) , x > 0 (A1)

whereb andy are two positive reals. The root of the function
f is

� = y. (A2)

Our goal is to determine the root of the functionf numerically

f (x) = 0 � x + b(y Š x) = x � g (x) = x (A3)

where

g(x) = x + b(y Š x) . (A4)

It is possible from the Þxed-point method formulaxk+1 =
g(xk ) = xk + b(y Š xk ) starting with an initial approximating
of x0 and fork � 0, to get closer and closer approximations of
a root� [36, p. 31]. To ensure the convergence of the sequence
of approximations{ xk } , the functiong(x) should ensure the
following condition [36, p. 32]:

|g�(x)| < 1, x > 0. (A5)

Then

0 < b < 2. (A6)
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Since the sequence of approximations{ xk } could be negative
for 1 < b < 2. Then

0 < b < 1. (A7)
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