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—— Abstract

Inductive-inductive types (IITs) are a generalisation of inductive types in type theory. They allow
the mutual definition of types with multiple sorts where later sorts can be indexed by previous ones.
An example is the Chapman-style syntax of type theory with conversion relations for each sort where
e.g. the sort of types is indexed by contexts. In this paper we show that if a model of extensional
type theory (ETT) supports indexed W-types, then it supports finitely branching II1Ts. We use a
small internal type theory called the theory of signatures to specify IITs. We show that if a model of
ETT supports the syntax for the theory of signatures, then it supports all IITs. We construct this
syntax from indexed W-types using preterms and typing relations and prove its initiality following
Streicher. The construction of the syntax and its initiality proof were formalised in Agda.
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1 Introduction

Many mutual inductive types can be reduced to indexed inductive types, where the index
disambiguates different sorts. For example, consider the mutual inductive datatype with two
sorts isEven and isOdd, defined by the following constructors.

isEven : N — Set
isOdd  : N — Set
zeroEven : isEven zero
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For Finitary Induction-Induction, Induction is Enough

sucEven : (n:N) — isOdd n — isEven (sucn)
sucOdd : (n:N) — isEvenn — isOdd (sucn)

This can be reduced to the following single inductive family where isEven? true represents
isEven and isEven? false represent isOdd.

isEven? : Bool - N — Set
zeroEven : isEven? true zero
sucEven : (n:N) — isEven? falsen — isEven? true (sucn)

sucOdd : (n: N) — isEven? truen — isEven? false (sucn)

Inductive-inductive types (IITs [26]) allow the mutual definition of a type and a family of
types over the first one. II'Ts were originally introduced to represent the well-typed syntax of
type theory itself, and a prominent example is still Chapman’s [13] syntax for a type theory.
A minimised version is the IIT of contexts and types given by the following constructors.

Con :Set

Ty : Con — Set

empty : Con

ext :(I':Con) — Ty I — Con

U :(I':Con) —» Ty I

El :(I':Con) = Ty (ext I'(UT))

This type has two sorts, Con and Ty. The ext constructor of Con refers to Ty and the Ty-
constructor U refers to Con, hence the two sorts have to be defined simultaneously. Moreover,
Ty is indexed over Con. This precludes a reduction analogous to the reduction of isEven—isOdd,
as we would get a type indexed over itself. Another unique feature of IITs (which also holds
for higher inductive types [29]) is that later constructors can refer to previous constructors:
in our case, El mentions ext.

The elimination principle for the above IIT has the following two motives (one for each
sort) and four methods (one for each constructor).

ConP :Con — Set
TyP :ConP I' » Ty I' — Set
empty? : Con® empty
ext? (P :ConP ) — TyP? TP A — Con® (ext ' A)
uP :(rP . con® ) —Ty? r? (UI)
EP (P :Con” I) — TyP (ext® I'P (UP I'P)) (EIT)
Above we used implicit quantifications for I' : Con and A : Ty I' to ease readability, e.g. Ty"

has an implicit parameter I" before its explicit parameter of type Con® I.
Given the above motives and methods the elimination principle provides two functions

elimCon : (I": Con) — Con” I’
elimTy :(A:TyI') — TyP (elimCon ') A

with the following computation rules.

elimConempty = empty®
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elimCon (ext I' A) = ext® (elimCon I') (elimTy A)
elimTy (UT) =UP (elimConT)
elimTy (EI I) = EIP (elimCon I")

The functions elimCon and elimTy are an example of a recursive-recursive definition (using
nomenclature from [26]). This means two mutually defined functions where the type of the
second function depends on the first function. The proof assistant Agda [28] allows defining
such functions (even from non-IITs) and is currently the only proof assistant supporting
IITs!.

Reducing IITs to inductive types (more precisely, to indexed W-types) is an open problem.
Forsberg [26] presented a reduction in extensional type theory, however, this only provides
a simpler, non-recursive-recursive elimination principle. Hugunin [19] reduced several IITs
to inductive types, working inside a cubical type theory, but he also only constructed the
simple eliminator. To illustrate the difference, we list the motives, methods and the simple
elimination principle for the Con—Ty example. Again, we use implicit quantifications.

Con®  : Con — Set

Ty : Ty I — Set

empty® : Con® empty

extd :Con®T — Ty’ A — Con® (extT" A)
Us :Con® T — TyS (UT)

El® :Con®I' — Ty® (EIT)

selimCon : (I : Con) — Con® I’
selimTy :(A:Tyl) —» Ty A

This simple elimination principle is not capable of defining standard (metacircular) interpret-
ation [4] of our small syntax. Using pattern matching notation, this interpretation is the

following:
[-1 : Con — Set;
[-1 :[I] — Sety
[empty] =T
lext P A] = (v: [I]) x [A] 1
[UI)~ := Set

[EIf] (v,X):=X

The reason that we need the general elimination principle to define [-] is that [—] for types
refers to [—] for contexts, hence this function is recursive-recursive.

Kaposi, Kovacs, and Altenkirch [21] introduced a small type theory, called the theory of
signatures, to describe quotient inductive-inductive types (QIIT). QIITs are generalisations
of TITs where equality constructors are also allowed. A QIIT signature is a context in
the theory of QIIT signatures, for example natural numbers are specified by the context
(Nat : U,zero : Nat,suc : Nat — Nat) of length three (Nat, zero and suc are variable
names). The theory of QIIT signatures is itself a QIIT. In ibid., it is proved that if a model
of extensional type theory supports the theory of QIIT signatures, then it supports all QIITs.

1" An experimental version of Coq with IITs is also available on GitHub.
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For Finitary Induction-Induction, Induction is Enough

By omitting the equality type former from the theory of QIIT signatures, we obtain a
theory of IIT signatures and the construction is still valid. It follows that if a model of
extensional type theory supports the theory of IIT signatures, it supports all IITs.

In this paper we show that any model of extensional type theory with indexed W-types
supports the theory of IIT signatures, and as a consequence all IITs. The difficulty in this
construction is that the theory of II'T signatures is itself a QIIT, it is both inductive-inductive
and has equality constructors. However, it can be seen as the well-typed syntax of a small
type theory without any computation rules. Hence we can represent the syntax of normal
forms without quotienting. We construct this well-typed normal syntax using preterms and
typing relations from indexed W-types. Finally, we prove the elimination principle in the
style of the initiality proof of Streicher.

Streicher [30] constructs the syntactic model of type theory using well-typed preterms
and then shows initiality of this model by (1) defining a partial map to any other model
by induction on preterms and (2) showing that whenever this partial function receives a
well-typed preterm on its input it actually gives an output. Instead of defining a partial
function, we define the graph of the same function as a relation and then show that it is
functional as a second step. This can be seen as an indexed variant of the construction using
partial functions.

Just as [21], we only consider finitary IITs, that is, constructors can only have a finite
number of recursive arguments. An example constructor for Con—Ty which is not allowed is
the following;:

Mo :(I':Con) > N> Tyl - Tyl

Structure of paper and list of contributions

We describe related work in Section 1.1, and explain our notation and Agda formalisaton in

Section 1.2. Then the following three sections describe our three contributions:
Section 2. We define what it means for a model of extensional type theory (ETT,
Definition 1) to support all inductive-inductive types (IITs): Definition 12. The novel
contribution here is a (predicative) Church encoding of signatures following [8].
Section 3. In Theorem 23, we show that if a model of ETT supports the theory of IIT
signatures (Definition 15), then it supports IITs. This is an adaptation of a proof in [21].
Section 4. Our main contribution is showing that if a model of ETT supports indexed
W-types, then it supports the theory of IIT signatures (Theorem 57), and hence, all IITs
(Corollary 58).

We list further work in Section 5.
The contents of this paper were presented at the TYPES 2019 conference in Oslo [22].

1.1 Related Work

The current work builds heavily on the work of Kaposi et al. [21] on finitary quotient
inductive-inductive types (QIITs); we reuse both QIIT syntax and semantics by restricting
to II'Ts, and we reuse the term model construction of QIITs as well. We also make use of the
extension to infinitary QIITs [24] to derive the specification of the elimination principle for
the theory of IIT signatures.

IITs (although not by this name) were first used to describe the well-typed syntax of type
theory [15, 13]. Agda supported these general inductive definitions even before they were
named IITs and given semantics by Nordvall Forsberg and Setzer [27]. Nordvall Forsberg’s
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thesis [26] contains a specification similar in style to Dybjer and Setzer’s codes for inductive-
recursive types [17]. He also develops a categorical semantics based on dialgebras and provides
a reduction of II'Ts to indexed inductive types, however only constructs the simple elimination
principle as opposed to the general one. Altenkirch et al. [2] define signatures for QIITs
(thus IITs as well) and their categorical semantics, however without proving existence of
initial algebras. Their notion of signature, like Nordvall Forsberg’s, involves more encoding
overhead than ours.

Cartmell [12] introduced generalised algebraic theories using a type-theoretic syntax.
Removing equations from his signatures and only considering finite signatures, we obtain
finitary IIT signatures similar to ours. He does not consider constructing initial algebras
using simpler classes of inductive types.

Hugunin [19] constructs several IITs in cubical Agda from inductive types. In this setting,
the lack of UIP makes constructions significantly more involved, and essentially involves
coinductive-coinductive well-formedness predicates defined as homotopy limits. Hugunin
does not consider a generic syntax of IITs and only works on specific examples (although the
examples vary greatly). He also only constructs simple elimination principles.

Streicher [30] presents an interpretation of the well-formed presyntax of a type theory
into a categorical model, which is an important ingredient in constructing an initial model,
although he does not present details on the construction of the term model or its initiality
proof. Our initiality proof can be seen as an indexed variant of his construction (see Subsection
4.2 for a comparison).

Voevodsky was interested in constructing initial models of type theories from presyntaxes.
Inspired by this, Brunerie et al. [10] formalised Streicher’s proof in Agda for a type theory
with II, ¥, N, identity types and an infinite hierarchy of universes. They used UIP, function
extensionality and quotient types in the formalisation. In this paper we construct a type
theory without computation rules, hence we avoid using quotients.

Intrinsic (well-typed) syntaxes for type theories were constructed using IITs [13], inductive-
recursive types [15, 6] and QIITs [4]. In this paper we avoid using such general classes of
inductive types as our goal is to reduce IITs to indexed inductive types.

Reducing general classes of inductive types to simpler classes has a long tradition in type
theory. Indexed W-types were reduced to W-types [3] (using the essentially Streicher’s idea
of preterms and a typing predicate), small inductive-recursive types to indexed W-types [25],
mutual inductive types to indexed W-types [23], W-types to natural numbers and quotients
[1]. (Q)IITs can be reduced to quotient inductive types using the reduction of generalised
algebraic theories to essentially algebraic theories [12]. Using the same reduction as mutual
inductive types to indexed inductive types, (Q)IITs with more than two sorts can be reduced
to (Q)IITs with only two sorts [20].

Awodey, Frey and Speight [8] construct inductive types using a restricted Church encoding
in a type theory with an impredicative universe. We use the predicative version of their
encoding to define IIT signatures.

Our reduction of IITs to indexed inductive types goes through two steps: first we construct
a concrete QIIT using inductive types, then we construct all ITTs from this particular QIIT.
A more direct approach is proposed by [5]: here the initial algebra would be constructed
directly for any IIT signature without going through an intermediate step.

1.2 Notation and Formalisation

» Definition 1 (Model of extensional type theory (ETT)). By a model of ETT we mean a
category with families (CwF) [16, 18] with a countable predicative hierarchy of universes
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For Finitary Induction-Induction, Induction is Enough

closed under the following type formers: I, X, T and an identity type with uniqueness of
identity proofs and equality reflection.

We will use Agda-like type theoretic syntax to work in the internal language of models of
ETT:

Universes are written Set;. We usually omit level indices in this paper.

II types are notated as (z : A) — B, or as A — B when non-dependent. We sometimes

omit function arguments, by implicitly generalising over variables.

Y-types, notated either as (z : A) x B, or as Y B when we want to leave the type of the

first projection implicit. Projections are eithg(cer named or given by proj; and proj,. We
use A x B for non-dependent pairs.

The unit type T has the constructor tt which is definitionally equal to all elements of T.
The equality (identity) type is written ¢ = wu, it has a constructor refl : ¢ = ¢, and equality
reflection, hence we use the same = sign for definitional equality. We occasionally indicate
by ¢;,....c,#t that t is well-typed thanks to the equalities e;,. .. ,e,. To construct proofs,
sometimes we write equational reasoning, e.g. fa = fb where e : a = b. We also have
uniqueness of identity proofs (UIP), expressing (e : t = t) — e = refl. Note that function
extensionality, expressing ((z : A) — fz = gz) — f = g is derivable.

The contents of Section 4 were formalised in Agda, the formalisation is available at
https://github.com/amblafont/Universalll. Agda’s pattern matching mechanism im-
plies uniqueness of identity proofs, we assumed function extensionality as an axiom and used
rewrite rules [14] to obtain limited equality reflection.

2 A Definition of Inductive-Inductive Types

In this section we specify what it means that a model of ETT supports IITs. We first define
the notion of IIT signature. Signatures for algebraic theories are usually given by inductive
definitions. On the one hand, we take this even further: our notion of signature is given
by a small type theory tailor-made to describe signatures, which we call the theory of IIT
signatures. On the other hand we would like to avoid using a complicated inductive definition
(a type theory is a quotient inductive-inductive type [4]) to describe a simpler class of
inductive types. Hence we use a Church encoding [8] of the theory of IIT signatures, thereby
avoiding the need for pre-existing inductive definitions. Another feature of our signatures is
that they can include types from the model of ETT (such as N in the isEven—isOdd). This is
why signatures are specified internally to the particular model of ETT.?

We define the theory of IIT signatures by saying what its algebras (models) are. We call
the theory of IIT signatures algebras simply signature algebras. The theory of signatures is a
small type theory consisting of a (1) a substitution calculus (category with families, CwF
[16]) equipped with (2) a universe, (3) a function space where the domain is in the universe
and (4) another function space with external domain. We explain the usage of these type
formers through examples after the definition.

2 There is another method inspired by Capriotti [11] which allows stating what it means that any CwF C
(not necessarily a model of ETT) supports II'Ts with definitional computation rules. In this method,
signatures are described in the internal language of C, the presheaf model over C. We do not use this
approach because it is more technical, and it would not strengthen our main result Corollary 58 as the
proof of Theorem 57 needs C to be a model of ETT.
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» Definition 2 (Signature algebra, SignAlg). In a model of ETT, a signature algebra is an
iterated ¥ type consisting of the following four (families of) sets, 17 operations and 18
equalities.

(1) Substitution calculus

Con :Set

Ty : Con — Set

Sub  : Con — Con — Set

Tm :(I': Con) = Ty I' — Set

id :SubI' T

—o— :SubOA - Subl'® — SubI' A
ass :(cod)ov=0co(dov)

idl tidoo =0

idr ooid=o

-[-] :TyA—=Subl'A—= Tyl
-[-] :TmAA— (0:SubI"A) - Tm I'(A[o])

[id :Ald=A
[o]  :A[ood] = Ao][d]
[id] :tfid =t
o] tlrod] = tlolle
: Con
€ :Sub -

N c(o:Subl') w0 =¢

~> —:(I': Con) —» Ty I' — Con

- — :(6:SubTI"A) - Tm I (A[o]) = SubI' (A A)
m :SubI'(A> A) - SubI" A

T c(o:SubI'(A> A)) » Tm ' (Alm0))

mp  m(ot)=0c

mf  me(o,t) =t

™ i (mo,mo)=0c

,0 2 (o,t) 08 = (0 00,t[d])

(2) Universe

U Ty’

El :TmI'U— Tyl

U] :Ujg]=U

El[] :(Ela)[o] = El(alo])

(3) Inductive parameters

I c(a:TmI'U) - Ty(I'>Ela) = Ty I’

—@—- :TmI'(TTaB) = (u: TmI'(Ela)) — Tm I" (El (B]id, u]))
) : (WaB)fo] =TI (alo]) (Blo o p,])

of :(taa)lo] = (to])e(alo])
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(4) External parameters

Il :(T:Set) = (T = Tyl) =Tyl

@ :TmI'({ITB) = (a:T) = TmI'(Ba)
] :{ITB)o] =T (\.(Ba)[o])

af i (taa)o] = (i) @a

Given an M : SignAlg, we denote its components by Con™, TyM, Sub™, Tm™ , id™, and so
on. We omit the indices if there is only one signature algebra in scope (e.g. in Definition 3
and Example /).

» Definition 3 (Abbreviations). For a signature algebra, we use wk : Sub (I' > A) I" to mean
m1id. We recover de Bruijn indices by setting 0 := m2id and 1 + n := n[wk]. IIa (B[wk]) is
abbreviated by a = B, IIT (\_.B) by T = B.

» Example 4 (Example contexts in a signature algebra). Given a signature algebra, we can
define a context which specifies natural numbers. For readability, an informal version of the
same context is displayed on the right using variable names.

->Up>2z:EI0>s:1=Ell >N:Up> 2z:EIND> s: N=EN

We start with the empty context -, then we declare a sort U, then we declare an operator
producing an element of the sort denoted by ElI0 where 0 is the de Bruijn index referring to
the sort. Finally, we declare an operator which takes as input an element of the sort (now it
became de Bruijn index 1) and produces an element of the same sort. Note the asymmetry
of the function type =: the domain needs to be an element of U, while the codomain can be
any type (including another function type). This ensures strict positivity of the operators.

Lists with elements of a given T : Set type are given by the following context. Here we use
the function space with external domain = to include a T in the signature. For readability,
we omit the A and the superscripts and we do not write the compatibility condition. On the
right we list the same signature with variable names.

->UDEIO>T=S1=EllL >L:Up>nil:EIL>cons:T=L=EIL

The Con—Ty example from Section 1 is given by the following context.

- > - D>

U Con :Up>

0=Up> Ty :Con=Up

Ellp> empty : ElCon >

M2(2e0 = EI3)> ext :II(I':Con)(Tyael = ElCon)>

13 (El(3a0))r> U :II(L: Con) (Bl (Tya ) >

T4 (El(4e(2@0@(1@0)))) El :II(I: Con) (El(Tye(exteI'a(Ua))))

The above examples are contexts in any signature algebra, and we could take this as a
definition of signature: (M : SignAlg) — Con™ is the usual Church-encoding of contexts.
However (as we will see in Remark 24) the notion of constructor for such signatures would
be too strong. Another approach would be to assume that there is a syntax for signature
algebras (an initial signature algebra), and then a signature would be a context in this
signature algebra. We will define syntactic signatures using this approach in the next section
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(Definition 16), but for now we do not want to assume the existence of any inductive type.
Instead, we will use a restricted Church encoding. This requires the notion of morphism of
signatures.

The notion of morphism is determined by the notion of algebra [24], but we include it
here for completeness.

» Definition 5 (Signature morphism, SignMor). A morphism from signature algebras M to N
denoted SignMor M N consists of four functions and 17 equalities expressing that the functions
preserve the operations of the two algebras. We use the same naming as in Definition 2 and
use superscripts to denote which algebra is meant.

(1) Substitution calculus

Con : Con™ — Con™

Ty :TyYr - TyN (ConT)

Sub : Sub™ " A — Sub®™ (Con I') (Con A)
Tm :TmM A — Tm™ (Con I') (Ty A)

id :Subid" =id"
o :00Mg = Subo o Subé
[ :Ale™M = Ty A[Sub o]
N te]™ = Tmt[Subo]V

: Con .M =N
e :SubeM =N
> :Con(I'>™ A)=ConI'N Ty A
. :Sub(e,t)  =Subo,N Tmt
7 :Sub(mMo) =m (Subo)
e :Tm(mMo)  =m” (Subo)
(2) Universe
U :TyuM =Uu¥
El :Ty(E™Ma) =E"(Tma)

(3) Inductive parameters

n :Ty(MM¥eB) =0TV (Tma)(TyB)
o :TmtaeMu) =Tmta® Tmu

(4) External parameters

I :Ty([M7TB) =0YT(\a.Ty(Ba))
@ :Tm@ta" o) =Tmta" a

Given an f : SignMor M N, we denote its first four components just by fcon, fry, fsub, fTm
or just write f if it is clear which one is meant.

We define IIT signatures using the Church encoding introduced by Awodey, Frey and
Speight [8]. A difference is that we avoid impredicativity. This restricts the possible
eliminations on signatures: we can only eliminate into a universe which is smaller than the
level of signatures. However, this still covers all eliminations in this paper, and it is also not
an issue for us that signatures do not live in the smallest universe.

6:9
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» Definition 6 (11T signature). An IIT signature is a context in an arbitrary signature algebra,
which is also compatible with morphisms:

Sign := (sig : (M : SignAlg) — ConM)x
((MN : SignAlg)(f : SignMor M N) — fcon (sig M) = sigN).

The compatibility condition says that if we obtain an M-context using sig at signature
algebra M and then we transport it to N using f, we get the same N-context as directly
applying sig to N.

The lack of impredicativity implies that our notion of signatures do not form a signature
algebra.

» Lemma 7. There is no M : SignAlg, in which Con™ = Sign.

Proof. If the Con component in SignAlg is Set;, then SignAlg is in Set;11, but as Sign is
defined as (SignAlg — ...) X ..., it is at least in Set; 1, so we can’t choose Con™ : Set; to
be Sign : Set;41. <

Note that the notion of IIT signature is relative to a model of ETT: it is expressed as a
term (of a function type) in the model. This is necessary because of the function space 11,
which has as domain an arbitrary type in the model. We make use of II in signatures with
external parameters, like the type of the elements in lists.

» Example 8 (Example signature). Now we can formally describe the contexts given in
Example 4 as signatures. For natural numbers, we have the following pair of functions. The
second function returns an equality proof which we describe using equational reasoning.

(nat, natc) :=

(AM.(:M M yM oM g(M oM MM o Mg MMy

AMN f . feon (M M YM oM gIM M oM (M _ M g M My _
feon (M M UM M M M) N (1IN SN EIN N =
foon (M M UMY BN fr (B 0M) N o 1V M pr (BN 1Y) =
feon M >N Iy UM N gV (frm OM) N 1M M E1M (frm 1Y) =
N pNyN pN NN pN N SN EIN 1Y)

The first component builds the context describing natural numbers in M, the second one

uses the fact that f is a morphism, that is, it preserves all operations.
The signatures for lists and Con—Ty can be given analogously.

Given a model of ETT and an IIT signature in it, we would like to say what it means
that the model supports the given IIT. For this we define the signature algebra ADS which
will provide notions of algebras, displayed algebras and sections for each signature. This is
the same as the —*, —P and —5 operations in [21]. Before defining ADS, we illustrate its
usage by an example.

» Example 9 (Algebras, displayed algebras and sections for natural numbers). For the signature
of natural numbers as given in Example 8, algebras are given by the X-type (IV : Set) x N x
(N — N). A displayed algebra over (N, z, s) is given by the 3-type

(NP N —Set) x NP2 x ((n: N) = NPn — NP (sn)),
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and a section of a displayed algebra (NP, 2P, sP) over (IV, 2, s) is given by the Y-type
(NS :(n:N)—= NPn)x (N°z=2P)x ((n: N)—= N%(sn) = s®n(N%n)).

Displayed algebras over the initial algebra are called motives and methods of the eliminator,

while a section of a displayed algebra over the initial algebra is the eliminator together with
its computation rules.

» Definition 10 (The signature algebra ADS). We define an element of SignAlg by listing all
its components Con, Ty, Sub, and so on, one per row. Fach such component has three parts
denoted by *, P and S, respectively. The equality components of SignAlg are omitted as they
are all reflexivity.

(I'™ : Set) x(I'P: ' — Set) X(I'S:(y: TR — I'Pry — Set)

(A7 : TA = Set) X (AP : TPy = AMy = Set) x(A%: IS~yqP = (a: A%y) =
AP 4P o — Set)

(o™ : A — AR x(oP: Py = AP (6" y))  x(0°: Sy4P =
AS(UA’Y)( 7P)

(" (y: IR = ARy) (P (Y7 TP y) = (8> (77 st ) —

AP AP () A5 (R ) (t° 7))

idA = id® D = D idS S = S

(005)‘\7 =" (%) (005)[’7’3 =" (6°9") (005)575 i=0°(6°7%)

(Afo])?y = AR(

o*y)  (A[o])P AP = AP (6P P)  (A[o])* 47 == A% (0°7F)
(tlo)™y == tA (@*y)  (tHo))PAP =tP (6P4P) (o))~ =1 (0°77)

A=T D =T S =T
f =t L =t e =t
(FDA) = (I'> AP (y,a) = (I'> AP (v,a) (4P, aP) =
(7: A)><AA7 (D'FD)XADvDa (79 : I y4P) x A4 aa®
(0.7 = ("7, 1" ) (0.)°7 = (074, tPP) (0,0)°4° = (0°°,£297)
(m o)y *PFOJl(UAV) (m10)° 47 = projy (6°47)  (m10)°+® := proj; (0% 1)
(m20)* 1= projy (0" 7) (m20)° 77 = projy (6°77) (2 0)° 7™ = proj, (0°7%)
UA~ := Set UPAP T :=T — Set UASTTP .= (a:T) = TP «
(Ela)?~ :=at~y (Ela)® P a := aP~P « (Ela)® v aa? = (a°+%a = aP)
(MaB)A~y = (MaB)° A f = (MaB)>4° f fP = (a:ahy) —
(a:a™y) = B*(y,a)  (aP:a®+Pa) = BS (v° yreflys s o) (f @)
B® (v7,a”) (f ) (fP (a>~° o))
(tau)y ="y (Why) (tau)®y? =tP1P (WPP) (tau)®y® i=ys 54 129° (1)
(AT B = (AT BPAP [ = (AT B+ f 2 = (0:T) -
(a:T) = (Ba)*y (a:T) = (Ba)’y (fa)  (Ba)+*(fa)(fPa)
(taa)*y:=t"ya (taa)® AP :=tP4Pa (taa)y° =t5~+%a

Definition 10 can be explained by columns (see [21, Sections 4 and 6] for more details) or by
rows (see [21, Section 7.4]).

We first explain it by columns: the first column (A components) corresponds to the
standard model (set model, metacircular interpretation [4]): contexts are sets, types are
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families, terms are functions, the universe U is given by Set, function spaces are given by the
external function space. The P column is a logical predicate interpretation, » and P together
are a unary version of the parametric model for dependent types [7]. Contexts are predicates,
types are families of predicates, terms say that the ” interpretation respects the predicates
(this is ususally called fundamental lemma of the logical predicate). U is given by predicate
space, the predicate at a II type holds for a function if it respects the predicates. For f[, the

S is a modified dependent logical relation

predicate is defined pointwise. The last column
which refers to both 4 and P. Contexts are binary relations where the second parameter
depends on the first one, types are dependent variants of this, terms say that the relation
is respected by A and P, respectively. U is however not relation space, but a function and
(Ela)® is the graph of the function a®. TI° for a function again says that the function respects

the relation, however we do not simply say
(ITaB)®~5 f fP = (a: a®7)(aP : P ~P a)(a® : (Ela)® v aal) = BS ...,

as (Ela)®v® aaP is just an equality a®v% a = a” which we can singleton contract. So we
omit a” and this equality as an input and replace a” by a®~® « in the definition.

When viewing ADS by rows, we can see that it is a part of the CwF model of type theory
[21, Section 7.4]. In the CwF model, a context is given by a CwF. Now, from the category
part of the CwF, we only have objects (I"), and from the families, we have the families for
types I'° and terms I'S. Types are the corresponding parts of displayed CwFs, substitutions
are parts of CwF morphisms, terms are parts of CwF sections. U is part of the CwF of sets,
Ela is the part of the discrete displayed CwF coming from a (which is a CwF-morphism
from I to the CwF of sets). II is given by a dependent product of displayed CwFs where it
is essential that the domain is discrete, I1 is the pointwise direct product.

» Definition 11 (The set signature algebra A). A : SignAlg is given by the first A components
of ADS (Definition 10), that is, Con™ :=Set, WA T':=I" — Set, Sub*I"'A:=I' - A, and
so on. There is a morphism from ADS to A defined by —* at each component, which we also
denote by —* : SignMor ADS A.

» Definition 12 (A model of ETT supports ITs). A model of ETT supports IITs if for any
signature (sig, sigc) : Sign there is a

congigy : (sig ADS)A
and an
elimgg (7D : (sig ADS)DconSig) — (sig ADS)S CONgig ~P.

In other words, for any signature, we have an algebra called con (constructors) and for any
displayed algebra over the constructors, we have a section (called the eliminator).

One can check that Definition 12 gives the right notion of constructors and elimination
principle for the signatures in Example 8.

» Example 13 (A model of ETT supports natural numbers). For the signature (nat, natc) of
natural numbers in Example 8, the type of con,; is

(nat ADS)* =

(.ADS ADS UADS ADS E|ADS OADS ADS 1ADS ADS ElADS lADS)A _

> > > =

((( > U) > El(m id)) > (71'2 (m id)) = El (7@ (m1 id))>A =
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A
o (V0 () ) UR ) x (Bl (m i) ) x (T (2 (mid)) (2 (ma (i) ) =
o (7” : ('Y/ t((y:T) x SEt)) x (projy ’Y/)) X (Pr0j2 (proj; ") — projs (proj; 7/,))7
so0  which is a left-nested ¥ type isomorphic to its right-nested counterpart

510 (N:Set)x(Nx(N—>N)).

su  Writing (((tt, Nat), zero), suc) for con,q:, the type of elim,,+ computes as follows.

w2 (v2 ¢ (nat ADS)P conpa;) — (nat ADS)S conpg 7P =

<7D ) > Bl (maid)) & (72 (m id)) = EI (72 (my id)))Dconmt> -
( ) > El(mid)) > (w2 (mid)) = El (2 (m id)))sconnat yP =

N (717 ) & El(myid)) > (2 (my id)) = EI (o (my id)))D

s (o Nat), zeo), >) -

(((- > U) > El(r2id) > (m2 (mid)) = EI (m2 (m) id)))s (((tt, Nat), zero), suc) 2 =
518 <(((tt,ND),zD),sD) :(fyDH : ('yD/ (4P Pit) x UPAHP Nat)) x (El (72 id))nyD/zero)x
519 (H (71'2 (71'1 Id)) (772 (7T'1 (7‘(‘1 |d))))D 'YD// SUC> —

(((. > U) & El(myid)) & (m2 (m1id)) = El (m (my id)))s(((tt,Nat),zero),suc)
521 (((tt,ND),ZD),SD) =

522 ((((tt:ND)aZD)75D) 5<’YDN : (”YDI (P Ptt) x UP P Nat)) x (El (2 id))DyD/zero)x
523 (H (772 (my id)) (772 (71 (m1 |d)))) P VDI/ suc) —
524 (75” S (75 (75 Stttt) x US S Nat NP)) x (El (maid))S 45" zero zD> X

v (1 (ra (m ) (ma (s (1)) 75" sues? =

526 ((((tt,ND),zD),sD) :(’VDH : (WDI (4P . T) x (Nat — Set))) X proj, 'yD/zero> X
. . " . . "

527 (projs (proj; v") n — projs, (proj; v77) (suc n))) —

528 (75// : (’yS/ (7% : T) x ((n: Nat) = NP n))) x proj, ~5' zero = zD> X

52 ((” : Nat) — projy (projy (proj; ’YSH)) (sucn) = s” (proj2 (projy (proj; ’YS”)) n))

s This is again a left-nested version of the expected elimination principle

532 (NP : Nat — Set)(z” : NP zero)(s” : (n: Nat) = NP n — NP (sucn)) —
533 (N9 :(n:Nat) = NP n) x (N zero = 27) x ((n : Nat) — N¥ (sucn) = s (N9 n))

TYPES 2019
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» Remark 14. The computation rules of the elimination principle are only expected up to the
internal equality type, but as we work with a model of ETT, we also get them as definitional
equalities by equality reflection.

3 Constructing all 1ITs from the Theory of IIT Signatures

In the previous section, using the notions of signature algebras and signature morphisms,
we defined IIT signatures and what it means for a model of ETT to support all IITs. In
this section we show that if a model of ETT supports the theory of IIT signatures, then
it supports all II'Ts. Using the Church encoding of Definition 6, every model of ETT can
describe ITT signatures. In contrast, in Definition 15, we will require existence of an initial
signature algebra.

The contents of this section are an adjustment of [21, Sections 4 and 6] to our setting.

» Definition 15. A model of ETT supports the theory of IIT signatures if there is a signature
algebra | : SignAlg equipped with a unique morphism []ar : SignMor | M into any algebra M.
Sometimes we omit the subscript pr. We call | the syntax or initial algebra, the morphism
[-] is called recursor.

» Definition 16 (Syntactic signatures). In a model of ETT supporting the theory of ITT
signatures, we call elements of Con' syntactic signatures.

One may wonder what is the relationship between the two notion of signatures.

» Lemma 17. In a model of ETT supporting the theory of ITT signatures, signatures and
syntactic signatures are isomorphic.

Proof. We can turn a (sig, sigc) : Sign into Con' by sigl and an £ : Con' into a Sign by
(AM.[[Q}]M,AMNf.(f [0 = (fo[ Ja) 2 = [[Q}]N)) where the equality proof in the
second component comes from uniqueness of the recursor (we have to define composition
of morphisms o for this). The compositions of these two maps are the identities: (sig, sigc)
is mapped to (AM.[sig I]as,...) = (AM.[-] s (sigI),...) which is equal to (AM.sig M, . ..)
because of sige; 2 is mapped to [2]; = 2 by uniqueness of [-]. <

We will define the term signature algebra by which we obtain the constructors con for any
IIT signature. Then we will define another signature algebra which provides the eliminator.
Before doing these, we illustrate the idea of both constructions on natural numbers.

» Example 18. For natural numbers, we will define the constructors con as the following
natural number algebra (Nat, zero, suc). We write variable names instead of de Bruijn indices
for readability.

Nat :=Tm'(->N:Up>z:EIN>s: N = EIN)(EIN)

zero 1=z

suc := A.(sat)
Natural numbers are simply |-terms of type EIN in the context which is the syntactic
signature for natural numbers. In this context, the only way to define a term of type EI NV is
to use z and s, corresponding to the zero and suc constructors.

To define the action of the eliminator on a natural number n : Nat, let’s look at the type
of the displayed algebra interpretation of the number:

[nlaps” : (Y2 :[[> N :Up>z:EIN>s: N = EIN]® con) — [EI N]P ([n]* con)
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This says that for a displayed algebra v? = (NP, 2P sP) over con (i.e. the motives and
methods of the eliminator), we get a witness of the predicate [EI N]° = N at the algebra
interpretation of n. This is not yet good, as we would like to get N n instead of N ([n]” con)
as a result. However, interpretation into the term signature algebra will imply that n =
[n]A con.

» Definition 19 (Term signature algebra IC_). For an £2: Con’, we define |Cy, : SignAlg which
we call the term signature algebra. It is equipped with a morphism —': SignMor (1IC) 1. We
define 1Cg, by listing its components Con, Ty, Sub, and so on, one per row. Fach component
has two parts denoted by ' and ©. The ' part just reuses the corresponding components from
I, and thus the morphism —' is defined as the obuvious projection. We omit the equality
components, as they come from UIP or are trivial. We also omit the components for terms
and substitutions as their © parts consist of uninformative equational reasoning.

r': Con' rc:sub 21" — [Ia

ATy AC: (v:Sub' "y - Tm' 2(A'[Y]) — [A]a (I'Cv)
o' Sub' " A o€ A (' ov) = [o]a (I V)

t:Tm' " A t: ACy (1)) = [t]a (I v)

(Alo])' := A'[6")' (Alo)) vt := A% (o' ov)t

d L=t

(> A :=1r's'A' (I'> A= (I (mv), AC (11 v) (72 v))

U= Uva:=Tm' 2 (El'a)

(Ela) :=El'd (Ela) vt i=y4c u t
(MaB) :=T'd' B" ([MaB) vt :=Aa.B  (V,ycy @) (t@ 4, u0)
(MITB):=MI'TB" ([MITB)vt:=A.(Ba)v(taa)

» Example 20. Now, given a syntactic signature {2 : Con', we get the constructors as an
-algebra by w := ([2]ic,)Cid" : [2]a. If 2 is the syntactic signature for natural numbers,
we get the constructors as in Example 18.

Ana:Tm' 2U is a sort term for the syntactic signature (2. If {2 is the syntactic signature
for natural numbers, a can only be N (1 as a de Bruijn index). If {2 is the syntactic signature
for Con—Ty (Example 4), a can be Con, Ty @ empty, Ty @(ext @ empty @(U @ empty)), and
so on. In any case, for such an a, we obtain ([a]ic,)¢id' : Tm' 2 (Ela) = [a]aw. That is, the
algebra interpretation of a sort term at the constructors is equal to terms of that sort.

At:Tm' 2 (Ela) is a term of a sort type a constructed using the constructors in {2. For
natural numbers, such a t can only be s applied iteratively to z. For such a t, we obtain
([thic,)Cid" - (t = [t]aw). That is, a constructor term is equal to its algebra interpretation at
the constructors. This is exactly the equation needed at the end of Example 18.

» Definition 21 (Eliminator signature algebra IE_). Given an (2 : Con', we use the abbreviation
w = [2ic,id" as in Example 20. Assuming an wP : ([2]aps)® w, we define the signature
algebra |Eo. It is equipped with a morphism —' : SignMor IE b |. We define |E b by listing
its components Con, Ty, Sub, and so on, one per row. Each component has two parts denoted
by' and E. The " part just reuses the corresponding components of |, thus the morphism —'
defined as the obvious projection. We omit the equality components, as they come from UIP
or are trivial. We also omit the components for terms and substitutions as their B parts are
uninformative equational reasonings.

I': Con' IE:(v:Sub 21" = [I° ([V]* w) ([v]°P wP)

1S
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ATy AE: (v:Sub' 2t : Tm' 2(A'[V]) —
[A]* (TFv) ([t]% @) ([¢]° wP)
o' :Sub' I A of : AB (o' ov) = [o]® (I'Ev)
t:Tm' ' A B AR v (#'[v]) = [t]° (I'Bv)
(Afo])" := A" (Alo])Bvt:= A (c'ov)t
di= Eyi=tt
(' A =1'p'A" (P> ARy = (I (mv), AB (71 v) (mav))
U= UEva = )\a.[[a]]cid#([[[[a]]cid#a]}DwD)
(Ela) == El'a! (Ela)f vt = ([a]® (1% v) ([ w) "B [a] (FF v) ¢ "2 [P wP)

(IlaB)' :=T'd'B' (aB)Evt:=
A [agciag (BT (W agcia, o1 g @) (@ [a] i, iat))
({IITB):=1'TB'" (ITB)Evt:=\.(Ba)fv(taa)

» Example 22. Given the assumptions (2, w? of IE, we obtain the eliminator by [[Q]]lEWD id'
[22]° wwP. The eliminator is a section of the displayed algebra w?”, that is, a dependent
function together with equalities witnessing that all the operations are preserved. If {2 is the
syntactic signature for natural numbers, we get the eliminator of Example 18.

For a sort term a : Tm' 2U, the interpretation (lalie_, )Eid says that (Aa.[a]®w?) =
[a]® ([£2]Eid), that is, the function for the sort @ in the eliminator section is the displayed
algebra interpretation at w? (motives and methods). For natural numbers, this is the same
as (An.[n]? (NP,2P,sP)) = (An.elimNat (NP, 2P, sP)n)).

The interpretation of a constructor term ¢ : Tm' 2 (Ela) is uninteresting as it provides an
equality between two different equality proofs of the computation (8) rule for ¢.

» Theorem 23. If a model of ETT supports the theory of IIT signatures, then it supports
all IITs.

Proof. For a signature (sig, sigc), we define constructors as

CONgjg 1= ([[sigl}]msigl)c id" : (sig ADS)?
This typechecks as [sigl]a = [~]a (sigl) = sig A = (sig ADS)?. We define the eliminator
by and an

elimgig vP = ([sig e, o )Eid" : (sig ADS)® congiy .

This typechecks firstly because the type of v” matches the type of the parameter of IE:

sigc

(sig ADS)P congiy = ([ Japs (sig1))P congiy = ([sig1]aps)® congig,
and the result also has the correct type:

[sig I]]S CONgig AP = ([-Taps (sig I))S CONig ~P e (sig ADS)S CONgig ~P.

<

» Remark 24. In the above proof, we crucially relied on the sigc property to define the
constructors (and the eliminator). This is why the simple Church encoding of signatures is
not sufficient.
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4 Constructing the Theory of IIT Signatures

In this section we show that any model of ETT which supports indexed W-types also

supports the theory of signatures, and as a consequence of Theorem 23, all IITs. For this, we

work in the internal language of a model of ETT supporting indexed W-types [3]. Indexed

W-types correspond to the usual notion of (possibly mutual) indexed inductive types. We

use Agda-style notation to define such inductive families: we list the sorts and constructors

and use pattern matching when eliminating from them. For an encoding of mutual inductive

families as indexed W-types, see e.g. [23].

We construct the theory of IIT signatures in the following steps:

1. We view the theory of signatures as a type theory, and we define its untyped syntax as
mutual inductive types together with typing judgments given by inductive relations on
the untyped syntax. Then the syntax | : SignAlg is constructed using those untyped terms
for which the typing relation holds.

2. We construct [—] : SignMor | M for arbitrary M : SignAlg, by:

a. defining a relation — ~ — between the well-typed syntax and a given signature algebra.

The idea is that given a syntactic context I and a semantic context I'™ of the signature
algebra M, we have I' ~ I'™ if and only if [I'] = I'M, and similarly for types, terms,
and substitutions;
b. showing that this relation is functional and thus obtaining a morphism.
3. Proving the uniqueness of this morphism by showing that any morphism f : SignMor | M
satisfies the relation. For example, for any syntactic context I" we have I' ~ f I'.

The next sections detail each of these steps.

4.1 Syntax

The goal is to define the syntactic signature algebra where contexts are pairs of a precontext
together with a well-formedness proof, and similarly for types, terms and substitutions.

Crucially, we do not have conversion relations for typed syntax, nor do we need to use
quotients when constructing the syntax. This is possible because there are no S-rules in
the theory of signatures. Hence, we consider only normal terms in the untyped syntax, and
define weakening and substitution by recursion. Avoiding quotients is important for two
reasons. First, it greatly simplifies formalisation. Second, we aim to reduce the theory of
signatures only to inductive types, thus making Theorem 57 stronger.

Now we present the definition of the untyped syntax and the associated typing judgments.

4.1.1 Untyped Syntax and its Properties

» Definition 25 (Untyped syntax). The untyped syntaz is defined as the following inductive
datatype.

(1) Substitution calculus

Con® : Set
TyP : Set
Sub®  : Set
TmP  : Set
-P : Con®
€? : SubP

6:17
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For Finitary Induction-Induction, Induction is Enough

- P —: Con® = Ty? — Con®

P~ :Sub? - TmP — SubP
varP N — TmP

(2) Universe

urP : TyP

EPP :TmP — TyP

(3) Inductive parameters

1P :TmP — TyP — TyP
—aP - :Tm? -5 TmP - TmP

(4) External parameters

P o (T:Set) — (T — TyP) —» TyP
I :(T:Set) = (T — TmP) —» TmP
6~ TmP = (a:T)— TmP

(5) Default value

err”  :TmP

Variables are modeled as de Bruijn indices, i.e. as natural numbers pointing to a position in
the context. We use the additional default constructor err? : TmP in case of error (ill-scoped
substitution). The typing judgments will not mention errP. The main interest of errP is that
it behaves like a closed term (which the theory of signatures lacks), in the sense that it is
invariant under substitution. This makes expected equalities about substitution true even in
the ill-typed case, thus reducing the number of hypotheses for the corresponding lemmas
(see Lemma 32).

We will define substitutions —[—] of types and terms recursively.

Note that (IIP A B)[o] should be defined as IIP (A[o]) (Blwko o ,P var?0]), and thus we
need to define wkg, the weakening of substitutions. The basic idea is to increment the de
Bruijn indices of all the variables. Actually, this is not so simple because of the IIP type: we
want to define wkq (ITP A B) as the II type of the weakening of A and B, but here, B must
be weakened with respect to the second last variable of the context, rather than the last one.
For this reason, we need to generalise the weakening as occuring anywhere in the context.

» Definition 26 (Untyped weakening). We define untyped weaking recursively on terms by
the following functions.

wk,, : Ty?P — TyP
wk,, : TmP — TmP
wkg : SubP? — SubP

The natural number n specifies at which position of the context the weakening occurs. Here,
wko weakens with respect to the last variable.

Later, in Lemma 36, we show that weakening preserves typing. Stating a typing rule for
this operation requires weakening at the middle of a context. This is why we define pairs of
untyped contexts, which should be thought of as a splitting of a context at some position.
We call the second context a telescope over the first one.

» Definition 27 (Untyped telescopes). An untyped telescope is given simply by a Con®.
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» Definition 28 (Merging of a context and a telescope).

745 - - : ConP — ConP — ConP
746 F;- =T
747 F;(ADPA)::(F;A)DPA

748

o » Definition 29 (Weakening for telescopes). Weakening for telescopes is defined pointwise.
w0 ||I'|| denotes the length of the context I.

751 wkg : Con®? — ConP

752 Wko P =P

wkg (A >P A) = wkg A >P WkHAH A

~~
G
pSa)

75 This will be used to give typing rules for telescopes in Definition 35.

6 » Definition 30 (Untyped unary substitution). We define single substitution by recursion on
w1 the presyntax:

758 “[-:=-]: Ty > N—=TmP - TyP
759 “-[-=-]:TmP > N— TmP - TmP

760

71 This is enough to state the typing judgments: indeed, the typing rule for application involves
72 only a unary substitution.

763 However, to construct the syntax as a signature algebra, we need to define parallel
s substitutions:

» Definition 31 (Untyped substitution calculus).

765 *[*] : Typ — Subp — Typ
766 =[] : TmP — Sub? —» TmP
767 —o —: Sub? — Sub? — Sub®

768

wo  These can be defined either by iterating unary substitutions, or by recursion on untyped
m  syntaz: the two ways yield provably equal definitions. In the following, we assume that they
m are defined by recursion. We also make use of the following definition:

772 keep : Sub? — SubP

= p p
3 = /\O’.(Wko()’7 var 0)

s The idea is that if o is a substitution from I' to A, then keepo is a substitution between
e contexts I' > Alo] and Ar> A for any type A where the last term is just a de Brugjn indez 0.
m  This occurs when defining (IIP A B)[o] as TIP (A[o]) (B[keep o]).

778 We define the identity substitution on a context I' as follows, where keep
o iterated ||I'|| times:

Il keep

780 id? : Con? — Subp

781 = /\F.keep“F”ep

782

75 » Lemma 32 (Exchange laws for weakening and substitution). Below, Z denotes either a term
s or a type and keep” denotes the n times iteration of keep.

785 wk-wk : Wk pt1 (Wky, Z) = wky, (Wki4p Z)

TYPES 2019
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For Finitary Induction-Induction, Induction is Enough

wk, [n] s (wky Z)[ni=2]=2Z

il (kg 2)[n = why ] = whnp (Z]n = )

wk[+] s (wkp Z)[n+p+1:=u]l =wk, (Zn+p:=u])

([+] Zn=ulln+pi=2=Zn+p+1:=2z]n:=(up:=2])

[
[keep”-wko] : Zlkeep™ (wko 0)] = wk, (Z]keep” o])
wk, [keep”-,] : (wky, Z)[keep” (o P u)] = Z[keep" o]
[=]lkeep]  : Z[n := u][keep" o] = Z]keep" ! o][n := uo]]

Proof. By induction on the untyped syntax. |

» Corollary 33. As particular cases for n =0, we get

owky : 0o (wkoT) = wkq(ooT)

wkgo, :wkooo (T ,Pt)=0corT

[wko] : t[wkg o] = wko(t[o])

wkol,] : (wko Z)[o P u] = Z[o]

[0:=][] : Z[0 := u][o] = Z]keep o][0 := u[o]]

» Lemma 34 (Composition functor law and associativity).

1 : Zlol[r] = Z[o o 7]

ass: (cod)oT=0co0(dorT)

We defer laws for identity substitutions after the definition of the typing judgments, as
the proofs require that some inputs are well-typed.

4.1.2 Typing Relations and Their Properties

» Definition 35 (Typing relations). The typing relations are defined as the following inductive
type indexed over the untyped syntax:

(1) Substitution calculus

-k : ConP — Set

-+ - : Con? — TyP? — Set

- F - €y —:Con® = N — TyP — Set
-F-e - :Con® = TmP — TyP — Set
-F -= - :Con® — Sub® — ConP — Set

W - P

e EeP =P

- - (I'E) > (T FA) =>T>PAE

w (AF) = (IFo=A) = (AFA) = (IFteAjo]) s TFoPt=AnPA
var” :(I'FneyA) — I'FvarPfne A

o S(IF) > (I A) = I'sPAF 0 ey wkP A

Sw (I'F) > (I A) = (TFneyA) - (I'F B) — I's? BFSn ey wkP A

(2) Universe
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- uw ('F) = T'FUP

E (I'F) = (TFaelP) = I'FEPq

826 (8) Inductive parameters

wr ™ (I'H) = (I'Fae W) - (I'>PEPak B) » I'-1Pa B

s app” :(I'F) > (I'FaeUP) = (I'>PEPat B)

829 — (I'+tellPaB) - (I'tueElPa) - I'tePue B0:=u]

830 (4) Exzternal parameters

1 (T:Set) 5 (A:T = Ty) > (') = ((t:T) > THAt) > THIPT A
632 app"” c(T:Set) 2 (A:T—>TyP) > (I'F) = ((¢t:T) = '+ Av)

- S (IT'FtellPTA) - (u:T)—TFtaue Au

s There is possibility of redundancy in the arguments of the constructors. Here, we are
s “paranoid” (nomenclature from [9]), so that we get more inductive hypotheses when performing
87 Tecursion.

» Lemma 36 (Weakening preserves typing).

838 WkowZ(F"A)%(F;A}_)—)FDF’A;WkoA}_

839 wk" (F"A)—>(F,A}—B)—)FDPA,Wkoﬂ}—WkHAHB

840 wk" (I'FA) = (I5AFte B) —» I'P A;wkg A |—WkHA”t GWkHAHB

841 wko" :(I'FA) - (I'Fo=A) TP AFwkpo= A

a3 Proof. By mutual induction on the typing relations. <
844 We show that judgments are stable under substitution.

» Lemma 37 (Substitution preserves typing).

85 0":(r ) (AFA)—» (I'Fo=A) = T'E Alo]

846 ": (') = (ArFteA) - (I'to= A) = I'ttlo] € Ald]

847 []W (A"iCGNA)—)(F'_O'iA)*)FI_I’[U]GA[(T}

g8 (') (T'+to=A)—»(Ar7=E)>IT'tT00=F

so  Proof. By mutual induction on the typing relations. |
851 We show the category and functor laws involving identity substitution for well-formed

g2 types, terms and substitutions.

» Lemma 38 (ldentity laws).

[i[dP]: (' A) —» Alid° I =A
854 [[d°]: (I'Fzeny A) = zfidP I =Va
[([dP]: (I'FteA) = t[idP I =t
856 idri? :(I'Fo=A)—o0o0id"I'=0
(

7 idIP :(I'to=A)—idPAoo =0

so  Finally, we show that the identity substitution itself is well-typed:
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For Finitary Induction-Induction, Induction is Enough

» Lemma 39 (Typing for the identity substitution).
id": (I'F) > T FidP I =T

» Definition 40 (Proposition). A type is a proposition, or proof-irrelevant, if it has at most
one inhabitant.

is-propT :=(a:T) = (a':T) > a=d
» Lemma 41 (Proof irrelevance of typing relations).

Con"P :is-prop (I' I)
Ty"? is-prop (I'+ A)
Var"® :is-prop (I' -z €y A)
Tm"P :is-prop (I' -t € A)

(

Sub™? :is-prop (I' - o = A)
» Lemma 42 (Unicity of typing).

Tm"=Ty:(I'tte A)—» (I'tteB)—-A=B
Var'=Ty: (I't2x ey A) - (I'+Fx ey B) - A=B

Let us consider for instance the application constructor app*: for a codomain type B it yields
an overall type C' = B[0 := u] for an application. Even if C' is known a priori, there may be
another B for which B[0 := u] = C, possibly leading to many proofs that ¢ @® u has type C.
Unicity of typing solves this issue, as B is then uniquely determined by the type IIP A B of .

4.1.3 The Syntax as a Signature Algebra

» Definition 43 (Syntax for the theory of signatures). We define the syntaz as an element of
SignAlg by pairs of untyped syntax and typing relations:

Con' ::ZFI—

r
Ty (I, ) = ZFI— A
Tm' (I, I')(A4, A%) ZFI—teA

Sub' (I, I'™)(A, AY) = Zr Fo= A

The other fields are given straightforwardly. Regarding the equations, it is enough to prove
them only for the untyped syntactic part: as we arqued in Lemma 41, the proofs of typing
judgments are automatically equal.

» Remark 44. Up until Definition 43, UIP is not used. Function extensionality on the other
hand is necessary because the untyped metatheoretic II takes a metatheoretic function as
an argument. An example induction step that uses function extensionality is in Lemma 38,
in particular in the case (IIT A)[id] = TIT A. Indeed, the left hand side of this equation
is equal to IIT (At.(At)[id]) by definition, whereas the induction hypothesis states that
(t:T)— (At)[id] = At.
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4.2 Relating the Syntax to a Signature Algebra

It remains to show that the constructed syntax | is the initial signature algebra. To achieve
this, we first define a relation between the syntax and any signature algebra, then show that
the relation is functional, which lets us extract a signature morphism from the relation.

This approach is an alternative presentation of Streicher’s method for interpreting preterms
in an arbitrary model of type theory [30]. Streicher first defines a family of partial maps
from the presyntax to a model, then shows that the maps are total on well-formed input. We
have found that our approach is significantly easier to formalise. To see why, note that the
right notion of partial map in type theory, which does not presume decidable definedness, is
fairly heavyweight:

PartialMap A B := A — ((P : Set) x is-prop P x (P — B))

In the above definition, we notice an opportunity for converting a fibered definition of a type
family into an indexed one; if we drop the propositionality for P for the time being, we may

equivalently return a family indexed over B, which is exactly just a relation A — B — Set.

Then, in our approach, we recover uniqueness of P through the functionality requirement on
the A — B — Set relation, and totality by already assuming well-formedness of A. In type
theory, using indexed families instead of display maps is a common convenience, since the
former are natively supported, while the latter require carrying around auxiliary propositional
equalities.

4.2.1 The Functional Relation

Given an M : SignAlg, we define the functional relation satisfied by the [-] : SignMor | M
by recursion on the typing judgments. If I' is a context in | and I'™ is a semantic context
(i.e. a context in the signature algebra M), we want to define a type I' ~ I'™ equivalent to
[I'] = I'™. Of course, at this stage, [] is not available yet since the point of defining this
relation is to construct [-] in the end.

For a type A in a context I', we want to define a relation A ~ AM that is equivalent to
[A] = AM. For this equality to make sense, the semantic type AM must live in the semantic
context [I']. But again, [-] is not yet available at this stage. Exploiting the expected
equivalence between I' ~ I'M and [I'] = I'M, we may consider defining A ~ AM under the
hypotheses that AM lies in a semantics context I'™ which is related to I'. Then, the type of
the relation for types is

(I':Con') = (A: Ty' ) = ('™ : Con™) — (' ~ I'M) — (AM : TyM M) — Set

Note that the relation on contexts must be defined mutually with the relation on types (see
for example the case of context extension), but here, the relation on contexts appears as the
type of an argument of the relation on types. We want to avoid using such recursive-recursive
definitions as they are not allowed by the elimination principles of indexed inductive types,
so we instead just remove the hypothesis I" ~ I'M from the list of arguments. We proceed
similarly for terms and substitutions. Actually, this removal is not without harm. For
example, consider relating the empty substitution I' - €? = ‘P to a semantic substitution
oM . SubM '™ AM We would like to assert that o™ equals the empty semantic substitution
€M but this is not possible because typechecking requires that AM is the empty semantic
context. This is precisely what was ensured by the hypothesis ' ~ AM we removed. Our
way out here is to state that o™ is related to the empty substitution if the target semantic
context AM is empty, and, acknowledging this equality, if o is the empty substitution.
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For Finitary Induction-Induction, Induction is Enough

Let us mention another possible solution for avoiding recursion-recursion: defining
A ~ AM g0 that it is equivalent to (e : [I'] = I'M) x ([A] =ex AM). In comparison, our
approach yields a more concise definition of the relation. For example, in the case of the
universe, this would lead to the definition U¥ I'V ~ AM = (I'V ~ I'M) x (AM = UM),
instead of our definition UY I ~ AM .= (AM = yM).

» Definition 45 (Relation — ~ —). We define the relation by recursion on the typing judgments.
In the following, we abbreviate A" ~pu AM by AY ~ AM when I'M can be inferred, and

similarly for terms and substitutions.

(1) Substitution calculus

-~ - : I'F— Con™ — Set
- ~pM - A - TYMTM 5 Set
o~ pMpAM - THte A - TmM M AM 5 Set
— ~pMpaM — Ttz eny A —TmM M AM 5 Set
— ~PMoAM — o= A —Sub™ 1M AM _ Set
w ., M M _ M
e ~pmopu 6M = (em: BM = M) x (6™ =. 4 V)
(I Y AY) ~ AM =) (I~ TM) 5D (A~ AM)x
Tt o
(AM FMDMAM)
(WAYAEY) ~ppa 0 =) (A~ AM) Y (0 ~ oM x
Py, prve
D (A"~ AMY N (Y ~ M) x
AM tM

(eE E]VI AM MAM)
((5 S — O’I\/[,Jth)
var” 2% ~ tM ="~ tM
O™ AY ~ pnippur tV = Z ~ MY 5N (AY ~ AM)x
AM
( A]W [\J\/f MAM)X
(ep: BM =, 4 wk™ AM) x (tM =, 4 vzM)
SYIAYn™ BY ~NAMpECOM tZVI = Z(FW ~ FM) X Z(AW ~ AM)X
A]\/I
> (BY ~ BM) x Y (" ~nM)x
BM nM
( A]\/I FM MBM)
(ec : C Zea# WkM AM)X
(tM =enec# vs' M)
(2) Universe
UY TWAW ~ AJV[ — AM _ UI\/[
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EM oY ~ AM

(3) Inductive parameters

o™ M™e"BY ~ CM

appw ™a"BYt"u" ~NprMpoM X

(4) Metatheoretic parameters
T A" A" ~ BM

app T ATV AVt u ~ parpgar ™M

4.2.2 Right Uniqueness

Next, we prove that this relation is right unique. Then, we show that the relation is stable
under weakening and substitution. The last step consists of showing left-totality, i.e. giving a
related semantic counterpart to any well-typed context, type or term. Everything is proved

= (@ ~a) x (AM = EM o)

oM

=Y (a" ~a") x> (B* ~ BM)

oM BM

x (CM =11M o™ BM)

M= (" ~aM) x> (B" ~ BM)x

aM BM

Z(tw ~ M) x Z(uW ~ uM)x
tAJ 1LA4

(ec : CM = BM[0 .= uM]™)x
(@ =ee tMaMuM)

= ((t:T) = A" ~ AM ) x (BM =TIV T AM)

AM

=) ((#:T) > A~ AM ) Y (8~ M) x

AM tM

(ep: BM = TIM T AM) x (2™ =, 4 tM &M u)

by induction on the typing judgments.

» Lemma 46 (Right uniqueness). The relation is right unique in the following sense:

NP (I T H) — is-prop (> '™ ~ ')

M

X~PL(AY:THEA) — is-prop (Z A"~ AM)

AM

S (T Ete ) —is-prop ()t ~tM)

tM

Y~Pi (@ THxeny A) — is-prop (Zw"" ~ zM)

M

Y~Pi(oV:T'Fo= A) %is—prop(ZaWNJM)

» Remark 47. We mentioned that in order to avoid a recursive-recursive definition, we
removed some hypotheses in the list of arguments of the relation. Such hypotheses are
sometimes missed, for example in the case of the empty substitution or in the case of
variables, requiring us to state additional equalities. Because of this, we need UIP to show
that >y I' ~ I'™ and Y 4u A ~ AM are propositions. One may think that the use of
UIP could be avoided by using the alternative verbose definition that we suggested before,
expecting that > pa > 4 A ~ AM | rather than Y 4, A ~ AM | is a proposition. However,
this is not obvious. For example, we were not able to define EIY I' ¢ ~ AM in this fashion.

oM
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For Finitary Induction-Induction, Induction is Enough

In related work, Hugunin investigated constructing I1Ts without UIP [19] in cubical type
theory, and demonstrated that well-formedness predicates used in syntactic algebras can
subtly break in that setting. Also, while Hugunin does not use UIP, he only shows the
simple version version of dependent elimination for the constructed IITs. Hence, the question
whether IITs are reducible to inductive types in a UIP-free setting remains open.

4.2.3 Stability under Weakening and Substitution

Stability of the relation under weakening must be proved before stability under substitution.
Indeed, in the proof of stability under substitution, the Il case requires to show that
I1 (A[o]) (Blkeep o]) is related to IIM (AM[o]™) (BM [keep™ J]M). We would like to apply
the induction hypothesis, so we need to show that keepo = wkyo ,P var? 0 is related to
keep™ oM | knowing that o is related to o™. As keepo = wko o ,P varP 0, we are left with
showing that wkg o = o o wk (where wk = wkq id) relates to its semantic counterpart.

To achieve that, we show that wkg preserves the relation, for types and terms. This
requires to generalise a bit and show that wk,, preserves the relation, as wko (IIAB) =
IT (wko A) (wky B). But remember that wk,, performs a weakening in the middle of a context,
so we first define the semantic counterpart of this:

Swko=M (MY T F) = (I ~TM) —
(AY: T3 AF) = (AY ~ AM)
(AM  TyM My (A Con™) x (Sub™ A™M AM)
Here, A’ M should be thought of as the context AM where the weakening has happened in
the middle of the context, by inserting the type AM after the prefix I'™. Indeed, we expect
that I'™ is a prefix of AM, as I'M relates to I and AM to I'; A. The substitution from
the weakened context to the original one must be computed at the same time otherwise the
induction hypothesis is not strong enough. Then, we separate the two components under the
same (implicit) hypotheses:
wkoM AM AM . ConM
wk=M AM AM - gy (koM AM AM) AM
Note that if recursion-recursion is available in the metatheory, wko™ and wk=" can be

defined directly without introducing this intermediate Swko ="/.

» Lemma 48 (Weakening preserves typing). The following statements are all under the
hypotheses (I'™ : ' ), (I' ~ I'™M) (AY : T A F), (AY ~ AM), (AY : '+ A), and
(AY ~ AM),

wko~ : wko" AV AY ~ wko™ AM AM

Wk (T : T3 AR T) — (T ~ TM) = wk™ AY T ~ TM [wko=2 AM AMY

Wk (0T AREET) =5 (1%~ tM) s wk™ A% Y ~ 1M k=M AM AMY

wk (@Y T ARt ey T) — (2% ~ M) — wk™ AV 2" ~ xM[Wk0:>MAMAM]M
Proof. By mutual induction on the typing judgments. |

» Lemma 49 (Weakening of substitution preserves — ~ —).
wkom : (I :TH) = (I ~TM) 5 (AY: T+ A) = (AY ~ AM)

(6" :TFo=A) = (6" ~ M) = (wke" A" ~ M oMwk)
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w9 Proof. By induction on the typing judgments. |

1050 Next, we want to prove that given any well-typed substitution ¢ : Sub I' A and semantic
wsi  contexts I'™ and AM | related to I' and A, respectively, there is a semantic substitution
w2 related to o. In the extension case I'+ o P t = A >P A, the induction hypothesis provides
wss oM AM - AM yelated to their syntactic counterpart. However, the premises of the induction
s hypothesis for getting a relevant t require showing that the type AM [0 ]M is related to
wss  the syntactic type Alo].

» Lemma 50 (Preservation of the relation by substitution for variables).

1056 [~:(@":ThFo=A) = (0" ~oM) 5 @V : Az ey A) = (a2 ~ M) =
1% ["a"o" ~ oMo M)
s Proof. Induction on typing. <

wo B Lemma 51 (Preservation of the relation by substitution for types and terms). We assume
wer (oW :TFo= A), (" ~cM), (I':TF), (I'~TM), (A" : AF), and (A" ~ AM):

oo [ (A% AR A) o (A% ~ AM) S VTV AV~ AM M)
1953 I (B ARt A) — (8% ~ M) — [T ~ tM oMY
wes  Proof. Mutual induction on typing. |

wss B Lemma 52 (The relation is preserved by composition and identity). We have the same
wer  hypotheses as in the previous lemma.

1068 o~ ((EY:EF) = (B"~EM) 5 (0" :AF 6= E) = (6" ~ M) =
1069 OWFW5WUWN5MOM0'M
1070 id s (MY T F) = (I ~ MY 5 id" T ~ id s

1071

w2 4.2.4 Left-Totality and the Recursor

w3 Before defining the recursor [-], we show left totality of the relation: that is, the image of a
wra  syntactic context is a unique semantic context which is related to it, and similarly for types
ws  and terms.

» Lemma 53 (Left totality of — ~ —).

SConw~: (I™: I't) =Y I~ 1M

M
1077 STy~ (YT ) = (I~ TM) 5 (AY : TF A) — (AM - TyM My (A ~ AM)
STm~ (I :TF) = (I ~TM) = (A : THA) — (A" ~ AM) —

(" :THteA) — (M TmMMAMY x (1 ~ tM)

1080 SVar~ : (I :TH) = (I ~TM) (A : T A) = (A" ~ AM) -
1081 (" :TFaxey A) = (@M TmMrMAMY) 5 (2% ~ M)
1082 YSub~ (I :TF) = (I ~TM) = (A" : AF) = (A% ~ AM)
1083 (e :T'Fo= A) = (eM:SubMrMAM) x (6% ~ oM)
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Proof. By induction on well-formedness judgments. The right uniqueness of the relation is
used in this induction. <

» Lemma 54 (Existence of the recursor). For any M : SignAlg there is a [-] : SignMor | M
where | is given in Definition 43.

Proof. Using the first projections in the construction of the left-totality construction and
right uniqueness. |

4.3 Uniqueness

It remains to show that the morphism constructed in Lemma 54 is unique. We exploit right
uniqueness of the relation: it is enough to show that any such morphism maps a syntactic
context to a related semantic context, and similarly for types and terms.

» Lemma 55. We assume an arbitrary signature morphism f from | to M. This induces
the following maps:

Con’ : (I'+) — Con™

Ty (I'"™:TF) = (I'F A) — TyM (Con’ ')

Tm/ (I TF) = (A" : T+ A) = (I'-te A) — TmM (Con’ ) (Ty/ T A)
Var! (I :I'F) = (AY: T+ A) - (I'Fz ey A) — Tm™ (Con’ 1) (Ty/ ™ AY)
Sub/ (I :TF) = (A" : AF) = (I' 0 = A) — Sub™ (Con’ ) (Con” A™)

The images of the above maps are related by — ~ —:

~Con! : (™ :I'+) = '™ ~ Con’ IV
~Tyl (DY TE) = (AY T HA) = I ~ Tyl v AY
~Tmd (P TH) = (AY:THA) = (Y :THte A) = I ~Tmf I A"
~Var! (M :TH) = (A" :TFA) = (@ :TFxeyA) - I ~Varl TV A" 2"
~Sub (YT H) = (A AF) = (6" : o= A) = '™ ~ Sub’ I AV o™
Proof. By induction on typing relations. |

» Corollary 56 (Uniqueness of the recursor). By right uniqueness of — ~ —, there is only one
morphism SignMor | M for any M.

» Theorem 57. If a model of ETT supports indexed W-types, it supports the theory of IIT
stgnatures.

Proof. We define the syntax | by Definition 43 which only used indexed W-types, the recursor
by Lemma 54 and we prove its uniqueness property by Corollary 56. |

» Corollary 58. If a model of ETT supports indexed W-types, it supports all IITs.

Proof. Combining Theorem 57 and Theorem 23. <
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5 Further Work

The current work only concerns finitary IITs. An extension would be to also allow infinitely
branching inductive types such as W-types. This would first require giving semantics for
infinitary IITs and adapting the term model construction. These would be straightforward
following [24]. However, it seems to be more difficult to construct the syntax of infinitary
IIT signatures without using quotients. The reason is that such syntax would not be
strictly restricted to neutral terms: the term model construction for infinitary II'Ts requires
A-abstraction and fn-rules for infinitary II types. A definition of normal preterms and typing
judgments on them may still be possible, but it appears to be much more complicated than
before (the current authors have attempted this without conclusive success).

As mentioned in Section 4.2.2, it also remains an open problem whether IITs are reducible
to inductive types in a UIP-free setting. To show this, we would need to construct the syntax
of signatures without UIP, and also reproduce the semantics and term model construction
for II'Ts without UIP.
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