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Abstract—In current monitoring solutions, each application
involves a customed deployment and requires significant con-
figuration efforts to adapt to changes in the sensor field. In
contrast, here we consider a massive deployment of battery-
powered sensors temporarily intervening in the monitoring.

In this paper, we propose a generic general-purpose monitoring
solution that is not tied to the deployment of physical devices. We
develop a method that allows to receive a homogeneous amount of
information per unit of time, since it is a simple and very efficient
way to monitor a physical quantity that varies in time. The
proposed solution limits the management costs when the sensor
field is changing. Considering that the sensors enter and exit
following random processes, we develop analytical results linking
the function parameters - the average amount of information
per unit of time - and the monitoring quality metrics - diversity,
management cost. Moreover, by comparing this solution to the
existing literature, we show that this solution is the most suitable
for the objectives that can be considered in the context of Massive
IoT.

I. INTRODUCTION

A. Interoperability for more versatility
Progress in electronics and signal processing has enabled the

development of miniaturized hardware. With the emergence of
new low-power telecommunications networks, a new genera-
tion of applications has emerged: large-scale deployed sensors
and actuators that can interact with their environment [1-3].

In a classical approach, a few very reliable sensors are
placed at pertinent locations to provide only relevant infor-
mation. Each solution is different and not very adaptable over
time. In contrast, the Massive Internet of Things (mIoT) takes
into account a large amount of cheap, energy autonomous sen-
sors without prior information about their quality or position.
This paradigm shift changes the game for the development
of monitoring solutions, as it requires a high degree of
flexibility in sensor management [4]. This makes it possible
to develop versatile solutions that are independent of physical
development.

At a scale as large as that predicted (,i.e. 500 billion objects),
being able to automate and standardize the integration and
management of these objects would remove a barrier to the
adoption of the mIoT. Interoperability, defined by the ability
to unify heterogeneous objects in a dynamic way, is therefore
an important step for the development of such solutions [4-7].
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B. Overview of research on energy efficiency of wireless
sensors

Sensors are usually powered by batteries and consume most
of their energy when transmitting information. The greater
the amount of information transmitted, the higher the power
consumption of the sensor. It is of particular interest to manage
sensor emissions appropriately in order to limit the energy
drain on the sensors.

First, since the early 2000s, energy saving features have
been proposed for devices [8,9]. Triggered and adaptive sens-
ing methods adapt the sensor sampling rate to variations in
the environment. However, in a mIot approach, we consider
standardized sensors designed to send periodic messages. This
emission period can only be updated during a short listening
window when the sensor sends a message to the gateway.

In 2018, [10] proposes to aggregate the information pro-
vided by several surrounding sensors to a single sensor. The
article uses the AHP and TOPSIS methods to determine the
groups of sensors that will aggregate their information in order
to optimize the transmissions. Other information aggregation
methods, based on index tree structures, are proposed in
[11,12]. Yet, mIoT solutions are primarily based on LPWANs
as the least energy intensive network model. This is a star
architecture, where direct sensor-to-sensor communications
are not allowed.

In 2014, [13] introduces the concept of ”Self-Organized
Things”. They introduce mechanisms that allow sensors to
be put to sleep if their spatial area is already covered by
other active sensors. In 2017, [14] proposes a energy-efficient
hierarchical network architecture. In this paper, they propose
an adaptation of the sleep times of the sensors, depending on
the battery level, the standard variation of the returned values
and the proximity to the other sensors. New results of [14] are
depicted in 2019 [15], validating the relevance of exploiting
the deep sleep mode. The latter approaches remain limited
for applicability to mIoT paradigm. For instance, they rely on
knowledge of sensor position and continuous modification of
sensor sampling time.

More recently, [16] proposes a framework for developing
monitoring policies adhering to the requirements that can be
expected in mIoT. They also propose a first instantiation of
these policies by adding a constraint: having strict periodical
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receptions coming each time from one of the sensors. We wish
to build on this work, by proposing a more realistic/applicable
solution in a very uncertain environment such as the one
envisaged for the mIoT.

C. Development of the solution proposed in the paper

We wish to track the average variations of a physical
quantity using a large amount of sensors entering and leaving
an environment.

First, we wish to receive a temporally homogeneous re-
ceiving stream, since this is considered the simplest and most
efficient way to track a physical quantity that varies over time
[17].

In addition, the proposed solution must reach dynamic level
of Conceptual Interoperability Model [18,19]. The sensors that
enter and leave the environment must be dynamically managed
by the monitoring system. No matter how many sensors are
active, the solution must be able to retrieve the same amount
of information over time.

This management of the sensors has a cost, which is
quantified by the number of messages sent to the sensors. With
each arrival and departure of a sensor, communications from
gateway to device are made. Among other things, this has a
negative impact on the QoS, which is why the objective is to
minimize this management cost.

Finally, the solution must be easy to implement and must
be robust against packet loss problems, which are considered
in most LPWAN technologies.

This kind of solution could be used for a connected wine
cellar for example, which would rely on connected objects
supposedly embedded in each wine bottle (illustrating the
mIoT paradigm). The objective would be to take advantage
of the wine bottles present in the cellar, to control the interior
temperature and to prevent a possible failure. The solution
should not be too disrupted when a new bottle arrives or one
leaves, while making the most of all the sensors present in the
study area.

Here is the list of the contributions of this paper:
•Based on a structure where sensors are represented by the
leaves of a almost complete full binary tree, we develop a
period update function allowing the temporally homogeneous
reception of messages at the desired target density, while lim-
iting the management cost for sensor arrivals and departures.
• By proposing a scenario where sensors enter and exit
following random processes, we establish analytical curves
linking the monitoring performance metrics to the parameter
set by the user.
• We compare our solution to the literature, confirming its
relevance in a posed framework such as the one intended for
mIoT.

The rest of the paper is as follows. section II introduces the
essential notions setting the framework for the development
of the solution proposed in the paper. In section III, we con-
struct the period update function and prove some properties.
We develop a scenario based on sensor inputs and outputs
that follow random processes, in section IV. Simulations
comparing the solution to the literature and confirming the

developed analytical solutions are shown in section V. Finally,
we conclude in section VI, by proposing perspectives for
future work.

II. PROBLEM STATEMENT

A. Hypothesis on sensors

We consider wireless sensors on battery, whose energy
varies over time. These sensors emit messages periodically,
sending information about a physical quantity towards the
monitoring system. After each transmission of a sensor, it
opens a listening window in order to receive information
from the outside (LoRaWAN Class A standard). We exploit
this listening time to send orders to redefine the transmission
period of the sensor. In particular, in this paper, we focus
on defining sensor emission management strategies, which we
characterize by a period update function f defined by :

Definition 1. Ht represents the transmission history up to time
t, including the new message received at time t.

The period update function is defined by the function f :

f : Ht −→ R+∗ (1)

f(Ht) redefines the transmission period of a sensor that has
just sent a message to the time t.

In our case, Ht represents the set of messages sent by
sensors until t, where each message contains only the message
content and the ID of the sending sensor.

We assume in this paper that sensors come and go during the
monitoring. Thus, the monitoring system must automatically
integrate sensors whose ID is not known. Also, we assume
that when a sensor leaves the environment, then a message
with empty content will be received by the monitoring system
during its next transmission. From this, we can manage the
following scenarios: (i) the sensor runs out of energy, (ii) it
physically leaves the environment, or no longer describes the
quantity to be monitored in a relevant way: failure leading to
the sending of aberrant data, description of a locally isolated
phenomenon.

B. Definition of the metric of monitoring

In this paper, we adopt the definition of diversity set out in
[16] to represent our quality metric for monitoring the physical
quantity. This metric relies on the freshness function [20-22],
which quantifies the relevance of a data, relatively to its age
∆t, compared to a reference time T .

Applying the notion of freshness to a sensor, considering
its most recent emission, we will use the following definition
of diversity.

Definition 2. The diversity at time t is defined as the sum of
the freshness of all sensors that were activated at that time.

For a period update function f , we define the mean diversity
as the average of the diversities over a given monitoring time,
denoted by D.

In addition to this tracking quality metric, we are interested
in minimizing the total number of period change orders. This
metric encompasses the problems of downlink congestion, as
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well as additional energy costs. Moreover, the orders sent to
the sensors may not be received. The fewer the number of
orders, the simpler the solution is to implement while being
robust to the hazards of packet loss.

It is possible to define an energy efficiency metric, contain-
ing transmissions, as it is the major vector of consumption
[23]. As constructed thereafter, we define our period update
function so that the number of emissions per time unit is a
parameter of the function. This parameter must therefore be
chosen to ensure sufficient monitoring quality, while limiting
the power consumption of the sensors.

III. DEVELOPMENT OF THE 2-LEVEL ROUND-ROBIN
MONITORING METHOD

A. Binary tree structure for the representation of sensors in
the environment

Before developing the period update function which is the
subject of this paper, we first focus on the representation
structure of the sensors present in the environment.

We represent the sensor field as leaf nodes in a binary
tree. We develop mechanisms to allow the inclusion of new
sensors and their output. The considered structure is a tree
that is full (each node contains 0 or 2 sons) and almost
complete (all levels are filled except the last level). By these
considerations, the present sensors can be grouped into two
categories representing the two maximum depths of the tree:

• the so-called ”large period” sensors are the leaf nodes
whose depth in the tree is maximal. Consequently, a
sensor of large period has a complementary (a sensor
that have the same root of first degree).

• the so-called ”small period” sensors, which are the leaf
nodes whose depth is not maximum.

Note that these categories are subject to change when the
sensor field is modified.

We identify each sensor by a unique ID locating it in the
binary tree. The ID of a sensor contains only ’0’ and ’1’ and
initially, a single sensor in the environment has an empty ID.
The ID size of a sensor corresponds to its depth in the tree,
so that the ID of small period have one character less than the
sensors of large period.

The tree changes as soon as the sensor field changes, i.e.
each time a sensor is added or removed. The ID of a sensor
can change over time.

•When a new sensor arrives in the environment, a present
sensor of small period passes of large period. The activating
sensor is also of large period. The ID of each sensor becomes:
the ID of the already active sensor + respectively ’0’ and ’1’.

•When a sensor leaves, there are 2 cases :
· If the leaving sensor is of large period. In this case, as

built, there is another sensor of large period complementary.
This last one becomes of small period by removing the last
character of its ID.

· If the leaving sensor is of small period, a sensor of large
period in chosen to come in substitution to it, copying it ID.
The complementary of the latter becomes of small period,
removing the last character of its ID.

If all the sensors belong to the same category, then when a
sensor is added, they will all be considered as small period;
when a sensor is removed, all are considered large period.

B. Development of the period update function

We want to define a period update function so as to receive
a homogeneous quantity of information through time. Thus,
we define τ such that 1

τ is the target quantity of reception per
unit of time required, coming from one of the present sensors.
In other words, over a sufficiently long time, the receptions
are equivalent to the periodic reception of messages of regular
interval τ .

We rely on the binary tree representation of the sensors to
set the emission period of the sensors. In particular, we rely
on the number of characters of the ID of a sensor to set its
emission period. For a given τ , we define the function as:

Definition 3. When receiving a new message:
- it may be necessary to update (or set) the sensor IDs, as

well as the large period and small period lists, to ensure that
we obtain a representation of the sensors as leaf nodes of an
almost complete full binary tree.

After this, considering i the ID of the sensor in the tree
which has emit a message at time t, |i| the number of caracters
of the ID. Then 2-level round-robin with parameter τ redefines
the sensor period as:

fτ (i) = 2|i| ∗ τ

C. Outstanding properties

Here, we prove that the amount of information per unit of
time is invariant by adding and leaving sensors. Furthermore,
we quantify an upper bound for the number of period changes
upon arrival and departure of a sensor.

First, we need to introduce some notations, that will be used
both for the below properties, and section IV. We assume a
state where the sensor field is constant, i.e. the period of a
sensor of ID i is exactly 2|i| ∗ τ . In reality, when a sensor ID
is changed, its period of emission only changed during its next
emission. Considering n sensors, k is denoted as the largest
power of 2 that is less than n: k = 2⌊log2(n)⌋. Moreover, we
rely on the properties of the representation tree to determine
the number of sensors present in each of both category:

• n2 = 2k − n sensors emit at period kτ and are of
small period. To understand this, if we add n2 additional
sensors, they become complementary to each of the
sensors of small period to make the binary tree perfect,
with exactly 2k sensors.

• n1 = 2(n − k) sensors emit with an emission period of
2k and are of large period.

Proposition 1. The sum of the inverses of the periods of the
active sensors remains unchanged at the addition of a new
sensor, and is equal to: ∑

i∈ present sensors

1

pi
=

1

τ
(2)
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Proof. We consider n sensors. pi is the emission period of
sensor i. Thus, we can say that:∑

i present sensor
1
pi

= n1

2kτ + n2

kτ

= 2|Π(t)|−2k
2kτ + 2k−|Π(t)|

kτ
= 1

τ

(3)

Changing the ID of a sensor results in a change of its
emission period, ordered at its next emission. If the ID is
changed several times before a new emission, the sensor
changes it emission period only once. Then, we depict an
upper bound for the number of period change orders when
a new sensor arrives or leave an environment, characterized
by the number of ID changes.

Proposition 2. When a new sensor arrives, the number of ID
changes (counting the ID definition of the incoming sensor)
is, by using 2-level round-robin:

r = 2

At the exit of a sensor, the number of ID changes of the other
sensors r is, by using 2-level round-robin:

• r = 1 if the sensor that dies is of large period,
• r = 2 if the sensor that dies is of small period,

This represents an upper bound on the number of period
changes.

We can note that if the sensor field does not vary frequently,
then this upper bound gives a good approximation of the
number of period changes.

IV. CHARACTERIZATION OF THE NUMBER OF ACTIVE
SENSORS BY A CONTINUOUS TIME MARKOV CHAIN

A. Modeling of sensor arrivals and departures by random
processes

We propose a modeling of sensor arrivals and departures by
random processes.

First, we model the time before the arrival of a new sensor
by an exponential law of parameter λ.

Moreover, we consider that a sensor leaves the environment
for two main reasons:
• The sensor has consumed all its energy and switches off. We
assume that the sensor has an initial energy which follows an
exponential law of parameter γce, characterizing the variability
of the battery state when it arrives in the environment. The
sensor consumes an energy ce at each emission, and leaves
the environment if its energy is null. This model is strictly
equivalent to say that for a sensor which has a period p, the
time before running out of battery follows an exponential law
of parameter γ

p .
• The sensor leaves the environment for another reason.
This includes a physical departure from the environment, a
technical failure or other. Here, we consider that the maximum
time that a sensor can stay before leaving is an exponential
law of parameter µ. Each sensor follows this law.

· · ·n· · ·10

λ λ

(n+ 1)µ+ γ
τnµ+ γ

τ

λ λ

2µ+ γ
τµ+ γ

τ

Fig. 1. Representation of the number of present sensors over time

B. Representation of the present sensors through time

The phenomenon ”sensor entry”, depicting the number of
sensor inputs over time, is a Poisson process of intensity λ.

”out of battery”, representing the number of sensors running
out of battery over time, is a Poisson process of intensity
γ
τ thanks to Proposition 1 and the additionality property of
Poisson processes. ”random exit”, the number of sensors going
out for other reasons, is a Poisson process that for n present
sensors in the environment has an intensity nµ.

This leads us to the definition of a continuous time Markov
chain representing the number of sensors over time, illustrated
in fig. 1.

C. Analytical expression related to monitoring metrics

We note Πn the probability of having n active sensors in the
steady state. By observing the transitions between n−1 and n
states in the steady state, we obtain the following recurrence
formulae:

λΠn−1 = (nµ+
γ

τ
)Πn

This gives us the following formulae for the expression of the
probability of being in state n in the steady state:

n ≥ 1,Πn =

 n∏
j=1

λ

jµ+ γ
τ

Π0

Also, since
∑+∞

n=0 Πn = 1, we get:

Π0 =
1

1 +
∑+∞

n=1

(∏n
j=1

λ
jµ+ γ

τ

)
The series

(∏n
j=1

λ
jµ+ γ

τ

)
n∈N∗

converge, so Π0 ̸= 0 exist,
hence the existence of a steady state.

The number of change IDs per unit of time considering n
present sensors, is denoted ṙn. From Proposition 2, by splitting
between small and large period sensors, ṙn is:

ṙn =

(
γ

τ

2n2

2n2 + n1
+ n2µ

)
×2+

(
γ

τ

n1

2n2 + n1
+ n1µ

)
×1+2λ

(4)
And so, the average ID changes per time unit, upper bound

of the average number of period changes per unit of time, is:

ṙ =

+∞∑
n=1

Πn ∗ ṙn (5)

Considering the freshness function uT (∆t) = e−
∆t
T , the

average diversity if there are n sensors in the environment is:

Dn = Tn1
1−e

−2kτ
T

2kτ + Tn2
1−e

−kτ
T

kτ
(6)
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The average diversity at equilibrium is therefore the sum of
the diversities for each possible value of number of sensors
present, weighted by the probability Πn :

D =

+∞∑
n=1

Πn ∗Dn (7)

V. SIMULATIONS

This section applies the 2-level round-robin method that is
developed in the present paper. First, we show that it offers
the best results in a context one can expect in mIoT, by
comparing it to existing literature. Moreover, we confirm that
the simulation fits the theoretical model from section IV-C. We
show that we can rely on these theoretical results to express
the link between the parameter τ and the quality metric, and
thus determine the value of τ relevant to the monitoring needs.

A. Simulation frame

We consider a monitoring by the use of sensors over a
given time. We evaluate the performance metrics after an
initial duration. We consider that the sensors enter and leave
the environment following the random processes defined in
section IV-A. For both two methods, namely 2-level round-
robin and periodic round-robin (from literature), and for a
given parameter τ , we apply the period update function
for each sensor message reception, and evaluate the overall
performance after the simulation is completed. The parameters
of the simulation are given in Table I, we use s as reference
of time. Performance results are shown in figs. 2 and 3.

Parameter Meaning Value
Beginning evaluation time 10000s
Ending evaluation time 100000s

λ parameter ”sensor entry” 0.1s−1

µ parameter ”random exit” 0.001s−1

γ parameter ”out of battery” 0.01

Freshness function Depletion over time e(−
∆t
T

)

T Relevance time of a data 20s

TABLE I
SIMULATION PARAMETERS

B. Comparison of 2-level round-robin with the literature

To the best of our knowledge, the only solution presented
in the literature suitable for the context that one can expect for
mIoT is [16]. The proposed function is parameterized by the
maximum number of sensors transmitting in turn M and the
target periodic reception τ . According to the considerations
taken in the current paper, the method is valid only when
M is equal to the total number of sensors present in the
environment. We name this method periodic round-robin.

For a given τ , the periodic round-robin and 2-level round-
robin methods return a same amount of information per unit of
time (, i.e. 1

τ ), and thus consume the same amount of energy by
emissions. Hence, we compare these two methods according
to a same value of τ .

First, from fig. 2, we notice that at a fixed τ , the average
diversities of the two methods are close, although the periodic

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

0

10

20

30

40

τ

di
ve

rs
ity

Mean diversity 2-level round-robin
95% confidence minimum diversity 2-level round-robin

Mean diversity periodic round-robin
95% confidence minimum diversity periodic round-robin

Theoritical diversity 2-level round-robin (7)
Graphic choice of τ according to requirement D = 20

Fig. 2. -Mean diversity and 95% confidence minimum diversity based on the
standard variation of diversities over time, comparing periodic round-robin
and 2-level round-robin methods, for different values of τ ∈ [0.05, 1.5].
-Depletion of theoretical curve fitting the mean diversity of 2-level round-
robin method.
-Example determining the parameter τ according to a requirement of mean
diversity D = 20.

round-robin method proposes a slightly better diversity than
2-level round-robin. Moreover, since there is a strictly periodic
reception of messages with periodic round-robin, the thresh-
old allowing a 95% confidence minimum diversity is more
centered around its mean than for 2-level round-robin, which
does not guaranty strict periodic reception of messages.

Comparing only diversity, the method from literature gives
the best results. However, looking at the number of period
changes (from fig. 3), our solution is much better, with a much
larger number of period changes for periodic round-robin.

The strict periodic reception imposed by the periodic round-
robin method induces a high sensitivity to packet losses.
Among other things, when a sensor is included in the solution,
it must perfectly receive 2 consecutive messages of period
modification order. Due to these latter arguments, periodic
round-robin does not meet the requirements of mIoT (large
amount of period change orders, not robust to packet loss),
and has only slightly better performance in terms of diversity,
compared to our new method. We can confidently state that our
solution is the most adaptable in a framework such as the one
we initially posed, modeling mIoT monitoring requirements.

C. Link between theoretical model and simulation, helping to
determine the parameter τ

From the theoretical model proposed in section IV-C, we
illustrate the link between the parameter of number of mes-
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Theoritical nb of period change per unit of time 2-level round-robin (5)

Fig. 3. Number of emission per time unit, comparing periodic round-robin
and 2-level round-robin methods, for different values of τ ∈ [0.05, 1.5].
Depletion of theoretical upper bound of the number of changes of 2-level
round-robin method

sages sent per unit of time target 1
τ and the average diversity

- the number of order of maximum period modifications, in
figs. 2 and 3. As constructed, the theoretical mean diversity (7)
gives a similar result to the simulation. It is therefore possible,
starting from a mean diversity objective, to choose without
the help of the simulation to determine the value of τ for the
2-level round-robin method that will give the desired mean
diversity. For example, if we want a mean diversity D = 20,
we will choose a value of the parameter τ = 0.97 (graphically
depicted in fig. 2).

Moreover, thanks to the upper bound developed, we ensure
that the number of orders of period modifications will not
be too important (in particular in comparison with periodic
round-robin), whatever the value of the parameter τ chosen.

VI. CONCLUSION ET PERSPECTIVES

This paper proposes an efficient monitoring solution that
relies on miniaturized sensors on battery transmitting on a
highly constrained network such as LoRaWAN Class A. Our
method dynamically manages the inputs and outputs of sensors
efficiently, while guaranteeing a homogeneous reception of
information per time unit by a target reception parameter.

Our solution allows the efficient monitoring of an average
physical quantity through the exploitation of highly con-
strained IoT objects in massive amount. This method, totally
generic and easily applicable to LPWANs in mIoT context,
validates the possibility of adopting such a paradigm for future
monitoring solutions.

A lot of work remains to be done: (i) we have shown that it
is possible to dynamically manage sensor inputs and outputs.
Here, it would be relevant to look for some conditions in order

to add and remove such sensors from information systems.
Conditions would be based on a geographical position or on
the relevance of the returned data, for instance. (ii) For the
moment, we have considered that each message constitutes an
atomic piece of information. However, each message contains
different information, which is very dependent on the sensors.
Incorporating these considerations into our monitoring policies
is also a next step.

ACKNOWLEDGEMENT

This work has been sponsored by the ValaDoE Chair.

REFERENCES

[1] N. Varsier and J. Schwoerer, “Capacity limits of LoRaWAN technology
for smart metering applications,” in IEEE International Conference on
Communications, pp. 1–6, 2017.

[2] M. I. Nashiruddin and A. Hidayati, “Coverage and capacity analysis
of LoRa WAN deployment for massive IoT in urban and suburban
scenario,” in 5th International Conference on Science and Technology,
vol. 1, pp. 1–6, 2019.

[3] M. Carminati, “Trends and paradigms in the development of minia-
turized sensors for environmental monitoring,” in IEEE International
Conference on Environmental Engineering, pp. 1–5, 2018.

[4] D. Puccinelli and M. Haenggi, “Wireless sensor networks: applications
and challenges of ubiquitous sensing,” IEEE Circuits and Systems
Magazine, vol. 5, no. 3, pp. 19–31, 2005.

[5] G. Hurlburt, J. Voas, and K. Miller, “The internet of things: A reality
check,” IT Professional, vol. 14, pp. 56–59, 05 2012.

[6] J. Gubbi, J. Buyya, S. Marusic, and M. Palaniswami, “Internet of things
(IoT): A vision, architectural elements, and future directions,” Future
Generation Computer Systems, vol. 29, no. 7, pp. 1645–1660, 2013.

[7] K. Janowicz, A. Haller, S. J. Cox, D. Le Phuoc, and M. Lefrançois,
“Sosa: A lightweight ontology for sensors, observations, samples, and
actuators,” Journal of Web Semantics, vol. 56, pp. 1–10, 2019.

[8] C. Alippi, G. Anastasi, M. Di Francesco, and M. Roveri, “Energy
management in wireless sensor networks with energy-hungry sensors,”
IEEE Instrumentation Measurement Magazine, vol. 12, no. 2, pp. 16–23,
2009.

[9] V. Raghunathan, S. Ganeriwal, and M. Srivastava, “Emerging techniques
for long lived wireless sensor networks,” IEEE Communications Maga-
zine, vol. 44, no. 4, pp. 108–114, 2006.

[10] S. Preeth, R. Dhanalakshmi, R. Kumar, and M. Shakeel P, “An adaptive
fuzzy rule based energy efficient clustering and immune-inspired routing
protocol for WSN-assisted IoT system,” Journal of Ambient Intelligence
and Humanized Computing, 12 2018.

[11] J. Tang, Z. Zhou, J. Niu, and Q. Wang, “EGF-tree: An energy efficient
index tree for facilitating multi-region query aggregation in the internet
of things,” in IEEE International Conference on Green Computing and
Communications and IEEE Internet of Things and IEEE Cyber, Physical
and Social Computing, pp. 370–377, 2013.

[12] J. Tang, Y. Xiao, Z. Zhou, L. Shu, and Q. Wang, “An energy efficient
hierarchical clustering index tree for facilitating time-correlated region
queries in wireless sensor network,” in 9th International Wireless
Communications and Mobile Computing Conference, pp. 1528–1533,
2013.

[13] O. Akgül and B. Canberk, “Self-organized things (SoT): An energy
efficient next generation network management,” Computer Communica-
tions, vol. 74, 07 2014.

[14] N. Kaur and S. Sood, “An energy-efficient architecture for the internet
of things (IoT),” IEEE Systems Journal, vol. 11, no. 2, pp. 796–805,
2017.

[15] U. Gupta, Y. Tripathi, H. Bhardwaj, S. Goel, A. Kaur, and P. Kumar,
“Energy-efficient model for deployment of sensor nodes in IoT based
system,” in Twelfth International Conference on Contemporary Comput-
ing, pp. 1–5, 2019.

[16] M. Maudet, M. Batton-Hubert, P. Maille, and L. Touain, “Emission
scheduling strategies for massive-iot: implementation and performance
optimization,” in IEEE/IFIP Network Operations and Management
Symposium, 2022.

[17] J. Gruijter, D. Brus, M. Bierkens, and M. Kotters, Sampling for Natural
Resource Monitoring. Springer, 01 2006.



7

[18] M. Tolk, “The levels of conceptual interoperability model (lcim),”
Proceedings IEEE Fall Simulation Interoperability Workshop, 2003.

[19] W. Wang, A. Tolk, and W. Wang, “The levels of conceptual interoper-
ability model: applying systems engineering principles to m&s,” ArXiv,
vol. abs/0908.0191, 2009.

[20] M. Bouzeghoub and V. Peralta, “A framework for analysis of data fresh-
ness,” in International Workshop on Information Quality in Information
Systems, pp. 59–67, 06 2004.

[21] A. Even and G. Shankaranarayanan, “Utility-driven assessment of data
quality,” SIGMIS Database, vol. 38, p. 75–93, May 2007.

[22] Y. Sun and B. Cyr, “Sampling for data freshness optimization: Non-
linear age functions,” Journal of Communications and Networks, vol. 21,
pp. 204–219, 2019.

[23] T. Bouguera, J. Diouris, J. Chaillout, R. Jaouadi, and G. Andrieux,
“Energy consumption model for sensor nodes based on LoRa and
LoRaWAN,” Sensors, vol. 18, no. 7, 2018.


