Skip to Main content Skip to Navigation
New interface
Conference papers

Outage Analysis for Correlated Sources Coding over NOMA in Shadowed κ-µ Fading

Abstract : We consider correlated sources coding over a up-link non-orthogonal multiple access shadowed κ-µ fading channel. The sufficient condition for lossless coding is determined by the intersection of the Slepian-Wolf region and multiple access channel region, assuming source-channel separation holds. The exact expression for the outage probability upper bound is derived by dividing the sufficient conditions into three cases. The accuracy of the analytical results is verified by the Monte-Carlo simulations. The analytical results indicate that more than 2 nd order diversity gain can be achieved with a larger ratio of line-of-sight dominant component in single cluster or multiple clusters with non-line-of-sight component. It is also found that the shadowed κ-µ fading well represents one-sided Gaussian, Rayleigh, Rician, and Nakagami-m fading in calculating the outage probability. Furthermore, the-outage achievable rate is analyzed, which is found to be larger with higher source correlation and/or average signal-to-noise ratio.
Document type :
Conference papers
Complete list of metadata
Contributor : Elsa Dupraz Connect in order to contact the contributor
Submitted on : Monday, May 23, 2022 - 11:25:15 AM
Last modification on : Friday, August 5, 2022 - 2:54:52 PM


1570764731 final (4).pdf
Files produced by the author(s)



Shen Qian, Jiguang He, Xiaobo Zhou, Takamasa Imai, Tad Matsumoto. Outage Analysis for Correlated Sources Coding over NOMA in Shadowed κ-µ Fading. WCNC 2022: IEEE Wireless Communications and Networking Conference, Apr 2022, Austin, United States. ⟨10.1109/WCNC51071.2022.9771603⟩. ⟨hal-03675569⟩



Record views


Files downloads