P. Pyykkö, Relativistic effects in chemistry: More common than you thought, Annu. Rev. Phys. Chem, vol.63, pp.45-64, 2012.

R. Ahuja, A. Blomqvist, P. Larsson, P. Pyykkö, and P. Zaleski-ejgierd, Relativity and the lead-acid battery, Phys. Rev. Lett, vol.106, p.18301, 2011.

K. G. Dyall and K. Faegri, Introduction to relativistic quantum chemistry, 2007.

K. Glantschnig and C. Ambrosch-draxl, Relativistic effects on the linear optical properties of Au, Pt, Pb and W, New J. Phys, vol.12, p.103048, 2010.

J. N. Harvey, Understanding the kinetics of spin-forbidden chemical reactions, Phys. Chem. Chem. Phys, vol.9, pp.331-343, 2007.

R. Bo?a, Zero-field splitting in metal complexes, Coord. Chem. Rev, vol.248, pp.757-815, 2004.

R. Maurice, C. De-graaf, and N. Guihéry, Theoretical determination of spin hamiltonians with isotropic and anisotropic magnetic interactions in transition metal and lanthanide complexes
URL : https://hal.archives-ouvertes.fr/hal-00906982

, Phys. Chem. Chem. Phys, vol.15, pp.18784-18804, 2013.

R. Maurice, R. Broer, N. Guihéry, and C. De-graaf, Zero-field splitting in transition metal complexes: Ab initio calculations, effective Hamiltonians, model Hamiltonians, and crystal-Field Models, Handbook of Relativistic Quantum Chemistry, pp.765-796, 2017.
URL : https://hal.archives-ouvertes.fr/in2p3-01323359

D. Teze, D. Sergentu, V. Kalichuk, J. Barbet, D. Deniaud et al., Targeted radionuclide therapy with astatine-211: Oxidative dehalogenation of astatobenzoate conjugates, Sci. Rep, vol.7, p.2579, 2017.
URL : https://hal.archives-ouvertes.fr/in2p3-01529705

R. Maurice, F. Réal, A. S. Gomes, V. Vallet, G. Montavon et al., Effective bond orders from two-step spin-orbit coupling approaches: The I 2 , At 2 , IO + , and AtO + case studies, J. Chem. Phys, vol.142, p.94305, 2015.
URL : https://hal.archives-ouvertes.fr/in2p3-01123856

C. Chang, M. Pelissier, and P. Durand, Regular two-component Pauli-like effective Hamiltonians in Dirac theory, Phys. Scripta, vol.34, pp.394-404, 1986.

J. Heully, I. Lindgren, E. Lindroth, S. Lundqvist, and A. Martensson-pendrill, Diagonalisation of the Dirac Hamiltonian as a basis for a relativistic many-body procedure, J. Phys. B, vol.19, pp.2799-2815, 1986.

E. Van-lenthe, E. J. Baerends, and J. G. Snijders, Relativistic regular two-component Hamiltonians, J. Chem. Phys, vol.99, pp.4597-4610, 1993.

M. Douglas and N. M. Kroll, Quantum electrodynamical corrections to the fine structure of helium, Ann. Phys, vol.82, pp.89-155, 1974.

B. A. Hess, Relativistic electronic-structure calculations employing a two-component no-pair formalism with external-field projection operators, Phys. Rev. A, vol.33, pp.3742-3748, 1986.

G. Jansen and B. A. Hess, Revision of the Douglas-Kroll transformation, Phys. Rev. A, vol.39, pp.6016-6017, 1989.

M. Ilia? and T. Saue, An infinite-order two-component relativistic hamiltonian by a simple one-step transformation, J. Chem. Phys, vol.126, p.64102, 2007.

W. Liu and D. Peng, Exact two-component Hamiltonians revisited, J. Chem. Phys, vol.131, p.31104, 2009.

W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev, vol.140, pp.1133-1138, 1965.

R. Mcweeny and Y. Mizuno, The density matrix in many-electron quantum mechanics II. Separation of space and spin variables; spin coupling problems, Proc. R. Soc. A, vol.259, pp.554-577, 1961.

B. O. Roos and P. Malmqvist, Relativistic quantum chemistry: the multiconfigurational approach, Phys. Chem. Chem. Phys, vol.6, pp.2919-2927, 2004.

P. Malmqvist, B. O. Roos, and B. Schimmelpfennig, The restricted active space (RAS) state interaction approach with spin-orbit coupling, Chem. Phys. Lett, vol.357, pp.230-240, 2002.

D. Ganyushin and F. Neese, First-principles calculations of zero-field splitting parameters, J. Chem. Phys, vol.125, p.24103, 2006.

B. A. Hess, C. M. Marian, U. Wahlgren, and O. Gropen, A mean-field spin-orbit method applicable to correlated wavefunctions, Chem. Phys. Lett, vol.251, pp.365-371, 1996.

F. Neese, Efficient and accurate approximations to the molecular spin-orbit coupling operator and their use in molecular g-tensor calculations, J. Chem. Phys, vol.122, p.34107, 2005.

M. Dolg and X. Cao, Relativistic pseudopotentials: Their development and scope of applications, Chem. Rev, vol.112, pp.403-480, 2012.

J. C. Slater, A simplification of the Hartree-Fock method, Phys. Rev, vol.81, pp.385-390, 1951.

R. Mcweeny, On the basis of orbital theories, Proc. R. Soc. A, vol.232, pp.114-135, 1955.

P. Malmqvist, A. Rendell, and B. O. Roos, The restricted active space self-consistentfield method, implemented with a split graph unitary group approach, J. Phys. Chem, vol.94, pp.5477-5482, 1990.

D. Ma, G. L. Manni, and L. Gagliardi, The generalized active space concept in multiconfigurational self-consistent field methods, J. Chem. Phys, vol.135, p.44128, 2011.

G. L. Manni, D. Ma, F. Aquilante, J. Olsen, and L. Gagliardi, SplitGAS method for strong correlation and the challenging case of Cr 2, J. Chem. Theory Comput, vol.9, pp.3375-3384, 2013.

B. O. Roos, P. Linse, P. E. Siegbahn, and M. R. Blomberg, A simple method for the evaluation of the second-order-perturbation energy from external double-excitations with a CASSCF reference wavefunction, Chem. Phys, vol.66, pp.197-207, 1982.

K. Andersson, P. Malmqvist, B. O. Roos, A. J. Sadlej, and K. Wolinski, Second-order perturbation theory with a CASSCF reference function, J. Phys. Chem, vol.94, pp.5483-5488, 1990.

K. Andersson, P. Malmqvist, and B. O. Roos, Second-order perturbation theory with a complete active space self-consistent field reference function, J. Chem. Phys, vol.96, pp.1218-1226, 1992.

C. Angeli, R. Cimiraglia, S. Evangelisti, T. Leininger, and J. Malrieu, Introduction of n-electron valence states for multireference perturbation theory, J. Chem. Phys, vol.114, pp.10252-10264, 2001.

C. Angeli, R. Cimiraglia, and J. Malrieu, N -electron valence state perturbation theory: a fast implementation of the strongly contracted variant, Chem. Phys. Lett, vol.350, pp.297-305, 2001.

C. Angeli, R. Cimiraglia, and J. Malrieu, N -electron valence state perturbation theory: A spinless formulation and an efficient implementation of the strongly contracted and of the partially contracted variants, J. Chem. Phys, vol.117, pp.9138-9153, 2002.

K. G. Dyall, The choice of a zeroth-order Hamiltonian for second-order perturbation theory with a complete active space self-consistent-field reference function, J. Chem. Phys, vol.102, pp.4909-4918, 1995.

J. Miralles, O. Castell, R. Caballol, and J. Malrieu, Specific CI calculation of energy differences: Transition energies and bond energies, Chem. Phys, vol.172, pp.33-43, 1993.

J. Malrieu, R. Caballol, C. J. Calzado, C. De-graaf, and N. Guihéry, Magnetic interactions in molecules and highly correlated materials: Physical content, analytical derivation, and rigorous extraction of magnetic Hamiltonians, Chem. Rev, vol.114, pp.429-492, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00907025

K. O. , Molecular magnetism. VCH, 1993.

A. B. Pippard, Magnetoresistance in metals, 1989.

A. Hauser, Light-induced spin crossover and the high-spin?low-spin relaxation, Spin-Crossover in Transition Metal Compounds II, pp.155-198, 2004.

J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Theory of superconductivity, Phys. Rev, vol.108, pp.1175-1204, 1957.

C. Ederer and N. A. Spaldin, Magnetoelectrics: A new route to magnetic ferroelectrics

. Mater, , vol.3, pp.849-851, 2004.

M. N. Leuenberger and D. Loss, Quantum computing in molecular magnets, Nature, vol.410, pp.789-793, 2001.

D. Gatteschi and R. Sessoli, Quantum tunneling of magnetization and related phenomena in molecular materials, Angew. Chem. Int. Ed, vol.42, pp.268-297, 2003.

W. Heisenberg, Zur theorie des ferromagnetismus, Z. Phys, vol.49, pp.619-636, 1928.

P. A. Dirac, Quantum mechanics of many-electron systems, Proc. R. Soc. A, vol.123, pp.714-733, 1929.

J. H. Van-vleck, A survey of the theory of ferromagnetism, Rev. Mod. Phys, vol.17, pp.27-47, 1945.

F. Neese, ORCA -An ab initio, DFT and semiempirical SCF-MO package

D. Maynaud and N. Ben-amor, CASDI suite of programs

S. Schmitt, P. Jost, and C. Van-wüllen, Zero-field splittings from density functional calculations: Analysis and improvement of known methods, J. Chem. Phys, vol.134, p.194113, 2011.

A. Kubica, J. Kowalewski, D. Kruk, and M. Odelius, Zero-field splitting in nickel(II) complexes: A comparison of DFT and multi-configurational wavefunction calculations, J. Chem

, Phys, vol.138, p.64304, 2013.

S. Zein and F. Neese, Ab initio and coupled-perturbed density functional theory estimation of zero-field splittings in Mn II transition metal complexes, J. Phys. Chem. A, vol.112, pp.7976-7983, 2008.

C. Duboc, D. Ganyushin, K. Sivalingam, M. Collomb, and F. Neese, Systematic theoretical study of the zero-field splitting in coordination complexes of Mn(III). Density functional theory versus multireference wave function approaches, J. Phys. Chem. A, vol.114, pp.10750-10758, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01658624

R. Maurice, R. Bastardis, C. D. Graaf, N. Suaud, T. Mallah et al., Universal theoretical approach to extract anisotropic spin Hamiltonians, J. Chem. Theory Comput, vol.5, pp.2977-2984, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00862784

M. Atanasov, D. Ganyushin, D. A. Pantazis, K. Sivalingam, and F. Neese, Detailed ab initio first-principles study of the magnetic anisotropy in a family of trigonal pyramidal iron(II) pyrrolide complexes, Inorg. Chem, vol.50, pp.7460-7477, 2011.

R. Maurice, K. Sivalingam, D. Ganyushin, N. Guihéry, C. De-graaf et al., Theoretical determination of the zero-field splitting in copper acetate monohydrate, Inorg. Chem, vol.50, pp.6229-6236, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00864012

R. Maurice, L. Vendier, and J. Costes, Magnetic anisotropy in Ni II -Y III binuclear complexes: On the importance of both the first coordination sphere of the Ni II ion and the Y III ion belonging to the second coordination sphere, Inorg. Chem, vol.50, pp.11075-11081, 2011.

J. Costes, R. Maurice, and L. Vendier, Pentacoordinate Ni II complexes: Preparation, magnetic measurements, and ab initio calculations of the magnetic anisotropy terms

, Eur. J, vol.18, pp.4031-4040, 2012.

S. Gomez-coca, E. Cremades, N. Aliaga-alcalde, and E. Ruiz, Mononuclear single-molecule magnets: Tailoring the magnetic anisotropy of first-row transition-metal complexes, J. Am

, Chem. Soc, vol.135, pp.7010-7018, 2013.

R. Ruamps, L. J. Batchelor, R. Maurice, N. Gogoi, P. Jiménez-lozano et al., Origin of the magnetic anisotropy in heptacoordinate Ni II and Co II complexes, Chem. Eur. J, vol.19, pp.950-956, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00779369

R. Ruamps, R. Maurice, L. Batchelor, M. Boggio-pasqua, R. Guillot et al.,

S. Bendeif, S. Pillet, T. Hill, N. Mallah, and . Guihéry, Giant Ising-type magnetic anisotropy in trigonal bipyramidal Ni(II) complexes: Experiment and theory, J. Am. Chem. Soc, vol.135, pp.3017-3026, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00795681

C. Teichteil, M. Pélissier, and F. Spiegelmann, Ab initio molecular calculations including spin-orbit coupling. I. Method and atomic tests, Chem. Phys, vol.81, pp.273-282, 1983.

R. Llusar, M. Casarrubios, Z. Barandiarán, and L. Seijo, Ab initio model potential calculations on the electronic spectrum of Ni 2+ -doped MgO including correlation, spin-orbit and embedding effects, J. Chem. Phys, vol.105, pp.5321-5330, 1996.

L. F. Chibotaru and L. Ungur, Ab initio calculation of anisotropic magnetic properties of complexes. I. Unique definition of pseudospin Hamiltonians and their derivation, J. Chem

, Phys, vol.137, p.64112, 2012.

F. Aquilante, L. De, N. Vico, G. Ferré, P. Ghigo et al., MOLCAS 7: The next generation, J. Comput. Chem, vol.31, pp.224-247, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01460198

C. Bloch, Sur la théorie des perturbations desétats liés, Nucl. Phys, vol.6, pp.329-347, 1958.

J. Cloizeaux, Extension d'une formule de Lagrangeà des problèmes de valeurs propres, Nuclear Physics, vol.20, pp.321-346, 1960.

J. S. Griffith, The theory of transition metal ions, 1961.

A. Abragam and B. Bleaney, Electron paramagnetic resonance of transition ions, 1986.

G. Rogez, J. Rebilly, A. Barra, L. Sorace, G. Blondin et al.,

S. Slageren, L. Parsons, A. Ricard, T. Marvilliers, and . Mallah, Very large Ising-type magnetic anisotropy in a mononuclear Ni II complex, Angew. Chem. Int. Ed, vol.44, pp.1876-1879, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00087292

J. Rebilly, G. Charron, E. Rivière, R. Guillot, A. Barra et al., Large magnetic anisotropy in pentacoordinate Ni II complexes, Chem. Eur. J, vol.14, pp.1169-1177, 2008.

J. Krzystek, S. A. Zvyagin, A. Ozarowski, A. T. Fiedler, T. C. Brunold et al., Definitive spectroscopic determination of zero-field splitting in high-spin cobalt(II), J. Am. Chem

. Soc, , vol.126, pp.2148-2155, 2004.

C. De-graaf and C. Sousa, Assessing the zero-field splitting in magnetic molecules by wave function-based methods, Int. J. Quantum Chem, vol.106, pp.2470-2478, 2006.

K. W. Stevens, Matrix elements and operator equivalents connected with the magnetic properties of rare earth ions, Proc. Phys. Soc. A, vol.65, pp.209-215, 1952.

S. A. Altshuler and B. M. Kozyrev, Electron paramagnetic resonance in compounds of transition elements, 1976.

C. Rudowicz and C. Y. Chung, The generalization of the extended Stevens operators to higher ranks and spins, and a systematic review of the tables of the tensor operators and their matrix elements, J. Phys.: Condens. Matter, vol.16, pp.5825-5847, 2004.

R. Maurice, C. De-graaf, and N. Guihéry, Magnetostructural relations from a combined ab initio and ligand field analysis for the nonintuitive zero-field splitting in
URL : https://hal.archives-ouvertes.fr/hal-00863114

, J. Chem. Phys, vol.133, p.84307, 2010.

L. J. Batchelor, M. Sangalli, R. Guillot, N. Guihéry, R. Maurice et al., Pentanuclear cyanide-bridged complexes based on highly anisotropic Co II seven-coordinate building blocks: Synthesis, structure, and magnetic behavior, Inorg. Chem, vol.50, pp.12045-12052, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00864146

B. Cahier, R. Maurice, H. Bolvin, T. Mallah, and N. Guihéry, Tools for predicting the nature and magnitude of magnetic anisotropy in transition metal complexes: Application to Co(II) complexes, Magnetochemistry, vol.2, p.31, 2016.
URL : https://hal.archives-ouvertes.fr/in2p3-01351335

R. Maurice, P. Verma, J. M. Zadrozny, S. Luo, J. Borycz et al., Single-ion magnetic anisotropy and isotropic magnetic couplings in the metalorganic framework Fe 2 (dobdc), Inorg. Chem, vol.52, pp.9379-9389, 2013.
URL : https://hal.archives-ouvertes.fr/in2p3-01631034

P. Verma, R. Maurice, and D. G. Truhlar, Adsorbate-induced changes in magnetic interactions in Fe 2 (dobdc) with adsorbed hydrocarbon molecules, J. Phys. Chem. C, vol.120, pp.9933-9948, 2016.
URL : https://hal.archives-ouvertes.fr/in2p3-01323355

S. P. Webb and M. S. Gordon, The effect of spin-orbit coupling on the magnetic properties of H 2 Ti(µ-H) 2 TiH 2, J. Chem. Phys, vol.109, pp.919-927, 1998.

E. Liviotti, S. Carretta, and G. Amoretti, S-mixing contributions to the high-order anisotropy terms in the effective spin Hamiltonian for magnetic clusters, J. Chem. Phys, vol.117, pp.3361-3368, 2002.

S. Carretta, E. Liviotti, N. Magnani, P. Santini, and G. Amoretti, S mixing and quantum tunneling of the magnetization in molecular nanomagnets, Phys. Rev. Lett, vol.92, p.207205, 2004.

R. Maurice, A. M. Pradipto, N. Guihéry, R. Broer, and C. De-graaf, Antisymmetric magnetic interactions in oxo-bridged copper(II) bimetallic systems, J. Chem. Theory Comput, vol.6, pp.3092-3101, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00864006

R. Maurice, N. Guihéry, R. Bastardis, and C. De-graaf, Rigorous extraction of the anisotropic multispin Hamiltonian in bimetallic complexes from the exact electronic Hamiltonian, J. Chem. Theory Comput, vol.6, pp.55-65, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00863055

R. Maurice, C. De-graaf, and N. Guihéry, Magnetic anisotropy in binuclear complexes in the weak-exchange limit: From the multispin to the giant-spin Hamiltonian, Phys. Rev. B, vol.81, p.214427, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00863106

R. Bo?a, Theoretical foundations of molecular magnetism, 1999.

J. Kortus, T. Baruah, N. Bernstein, and M. R. Pederson, Magnetic ordering, electronic structure, and magnetic anisotropy energy in the high-spin Mn 10 single molecule magnet

, Phys. Rev. B, vol.66, p.92403, 2002.

T. Baruah and M. R. Pederson, Density functional study of the conformers of Co 4 -based single-molecule magnet, Int. J. Quant. Chem, vol.93, issue.5, pp.324-331, 2003.

J. Kortus, M. R. Pederson, T. Baruah, N. Bernstein, and C. Hellberg, Density functional studies of single molecule magnets, Polyhedron, vol.22, pp.1871-1876, 2003.

K. Park, M. R. Pederson, and C. S. Hellberg, Properties of low-lying excited manifolds in Mn 12 acetate, Phys. Rev. B, vol.69, p.14416, 2004.

J. Ribas-arino, T. Baruah, and M. R. Pederson, Density-functional study of two Fe 4 -based single-molecule magnets, J. Chem. Phys, vol.123, p.44303, 2005.

J. Ribas-arino, T. Baruah, and M. R. Pederson, Toward the control of the magnetic anisotropy of Fe II cubes: A DFT study, J. Am. Chem. Soc, vol.128, pp.9497-9505, 2006.

E. Ruiz, J. Cirera, J. Cano, S. Alvarez, C. Loose et al., Can large magnetic anisotropy and high spin really coexist?, Chem. Commun, pp.52-54, 2008.

M. Moragues-cánovas, M. Helliwell, L. Ricard, E. Rivière, W. Wernsdorfer et al., An Ni 4 single-molecule magnet: Synthesis, structure and low-temperature magnetic behavior, Eur. J. Inorg. Chem, pp.2219-2222, 2004.

R. Ruamps, R. Maurice, C. De-graaf, and N. Guihéry, Interplay between local anisotropies in binuclear complexes, Inorg. Chem, vol.53, pp.4508-4516, 2014.
URL : https://hal.archives-ouvertes.fr/in2p3-00983068

N. Guihéry, R. Ruamps, R. Maurice, and C. De-graaf, Synergy and destructive interferences between local magnetic anisotropies in binuclear complexes, AIP Conf. Proc, vol.1702, p.90015, 2015.

R. Herchel, R. Bo?a, J. Krzystek, A. Ozarowski, M. Durán et al., Definitive determination of zero-field splitting and exchange interactions in a Ni(II) dimer: Investigation of, p.4

, Cl 2 ]Cl 2 using magnetization and tunable-frequency high-field electron paramagnetic resonance, J. Am. Chem. Soc, vol.129, pp.10306-10307, 2007.

P. W. Anderson, Antiferromagnetism. Theory of superexchange interaction, Phys. Rev, vol.79, pp.350-356, 1950.

P. W. Anderson, New approach to the theory of superexchange interactions, Phys. Rev, vol.115, pp.2-13, 1959.

P. W. Anderson, Theory of magnetic exchange interactions: Exchange in insulators and semiconductors, Solid State Physics, pp.99-214, 1963.

C. J. Calzado, J. Cabrero, J. Malrieu, and R. Caballol, Analysis of the magnetic coupling in binuclear complexes. I. Physics of the coupling, J. Chem. Phys, vol.116, pp.2728-2747, 2002.

C. J. Calzado, J. Cabrero, J. Malrieu, and R. Caballol, Analysis of the magnetic coupling in binuclear complexes. II. Derivation of valence effective Hamiltonians from ab initio CI and DFT calculations, J. Chem. Phys, vol.116, pp.3985-4000, 2002.

C. J. Calzado, C. Angeli, D. Taratiel, R. Caballol, and J. Malrieu, Analysis of the magnetic coupling in binuclear systems. III. The role of the ligand to metal charge transfer excitations revisited, J. Chem. Phys, vol.131, p.44327, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00865814

R. Bastardis, N. Guihéry, and C. De-graaf, Isotropic non-Heisenberg terms in the magnetic coupling of transition metal complexes, J. Chem. Phys, vol.129, p.104102, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00951624

R. Bastardis, N. Guihéry, and C. De-graaf, Microscopic origin of isotropic non-Heisenberg behavior in S = 1 magnetic systems, Phys. Rev. B, vol.76, p.132412, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00971757

N. Suaud, R. Ruamps, N. Guihéry, and J. Malrieu, A strategy to determine appropriate active orbitals and accurate magnetic couplings in organic magnetic systems, J. Chem. Theory Comput, vol.8, pp.4127-4137, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00864783

R. Maurice, E. Renault, Y. Gong, P. X. Rutkowski, and J. K. Gibson, Synthesis and structures of plutonyl nitrate complexes: Is plutonium heptavalent in PuO, Inorg. Chem, vol.3, issue.3, pp.2367-2373, 2015.
URL : https://hal.archives-ouvertes.fr/in2p3-01121844

P. Verma, R. Maurice, and D. G. Truhlar, Identifying the interactions that allow separation of O 2 from N 2 on the open iron sites of Fe 2 (dobdc), J. Phys. Chem. C, vol.119, pp.28499-28511, 2015.
URL : https://hal.archives-ouvertes.fr/in2p3-01250172

S. J. Tereniak, R. K. Carlson, L. J. Clouston, V. G. Young, E. Bill et al., Role of the metal in the bonding and properties of bimetallic complexes involving manganese, iron, and cobalt, J. Am. Chem. Soc, vol.136, pp.1842-1855, 2014.
URL : https://hal.archives-ouvertes.fr/in2p3-01631070

A. D. Buckingham, P. Pyykkö, J. B. Robert, and L. Wiesenfeld, Symmetry rules for the indirect nuclear spin-spin coupling tensor revisited, Mol. Phys, vol.46, pp.177-182, 1982.

B. C. Guha, Magnetic properties of some paramagnetic crystals at low temperatures, Proc. R. Soc. A, vol.206, pp.353-373, 1951.

B. Bleaney and K. D. Bowers, Anomalous paramagnetism of copper acetate, Proc. R. Soc. A, vol.214, pp.451-465, 1952.

A. Ozarowski, The zero-field-splitting parameter D in binuclear copper(II) carboxylates is negative, Inorg. Chem, vol.47, pp.9760-9762, 2008.

I. Dzyaloshinsky, A thermodynamic theory of weak ferromagnetism of antiferromagnetics, J. Phys. Chem. Solids, vol.4, pp.241-255, 1958.

T. Moriya, Anisotropic superexchange interaction and weak ferromagnetism, Phys. Rev, vol.120, pp.91-98, 1960.

A. S. Moskvin, Dzyaloshinsky-Moriya antisymmetric exchange coupling in cuprates: Oxygen effects, J. Exp. Th. Phys, vol.104, pp.913-927, 2007.

M. Atanasov, P. Comba, G. R. Hanson, S. Hausberg, S. Helmle et al., Cyanobridged homodinuclear copper(II) complexes, Inorg. Chem, vol.50, pp.6890-6901, 2011.

A. P. Ginsberg, R. L. Martin, R. W. Brookes, and R. C. Sherwood, Magnetic exchange in transition metal complexes. IX. Dimeric nickel(II)-ethylenediamine complexes, Inorg. Chem, vol.11, pp.2884-2889, 1972.

Y. Journaux, O. Kahn, B. Chevalier, J. Etourneau, R. Claude et al., Evidence for a low temperature phase transition in DI-µ-chloro-tetrakis (ethylene diamine) dinickel(II) chloride, Chem. Phys. Lett, vol.55, pp.140-143, 1978.

K. O. Joung, C. J. O'connor, E. Sinn, and R. L. Carlin, Structural and magnetic properties of dimeric, p.4

, Cl 2 ]Cl 2, Inorg. Chem, vol.18, pp.804-808, 1979.

M. Retegan, N. Cox, D. A. Pantazis, and F. Neese, A first-principles approach to the calculation of the on-site zero-field splitting in polynuclear transition metal complexes, Inorg. Chem, vol.53, pp.11785-11793, 2014.

J. F. Nye, Physical properties of crystals, 1985.

J. Telser, A. Ozarowski, and J. Krzystek, High-frequency and -field electron paramagnetic resonance of transition metal ion (d block) coordination complexes, Electron Paramagnetic Resonance, vol.23

. Chechik, The Royal Society of Chemistry, pp.209-263, 2013.

G. Juhász, R. Matsuda, S. Kanegawa, K. Inoue, O. Sato et al., Bistability of magnetization without spin-transition in a high-spin cobalt(II) complex due to angular momentum quenching, J. Am. Chem. Soc, vol.131, pp.4560-4561, 2009.

N. Ishikawa, M. Sugita, and W. Wernsdorfer, Quantum tunneling of magnetization in lanthanide single-molecule magnets: Bis(phthalocyaninato)terbium and bis(phthalocyaninato)dysprosium anions, Angew. Chem. Int. Ed, vol.44, pp.2931-2935, 2005.

M. Droin-oger, La thérie des orbitales moléculaires et l'émergence de la chimie quantique, 2003.

P. Löwdin, Nature of quantum chemistry, Int. J. Quantum Chem, vol.1, pp.7-12, 1967.

C. C. Pereira, R. Maurice, A. F. Lucena, S. Hu, A. P. Gonçalves et al., Thorium and uranium carbide cluster cations in the gas phase: Similarities and differences between thorium and uranium, Inorg. Chem, vol.52, pp.10968-10975, 2013.
URL : https://hal.archives-ouvertes.fr/in2p3-01631045

M. J. Polinski, E. B. Garner, R. Maurice, N. Planas, J. T. Stritzinger et al.,

G. Knappenberger, S. Liu, L. Skanthakumar, D. A. Soderholm, T. E. Dixon et al., Unusual structure, bonding and properties in a californium borate, Nat. Chem, vol.6, pp.387-392, 2014.
URL : https://hal.archives-ouvertes.fr/in2p3-00966875

D. S. Wilbur, Enigmatic astatine, Nat. Chem, vol.5, p.246, 2013.

J. Champion, M. Seydou, A. Sabatié-gogova, E. Renault, G. Montavon et al., Assessment of an effective quasirelativistic methodology designed to study astatine chemistry in aqueous solution, Phys. Chem. Chem. Phys, vol.13, pp.14984-14992, 2011.
URL : https://hal.archives-ouvertes.fr/in2p3-00617428

M. Valiev, E. J. Bylaska, N. Govind, K. Kowalski, T. P. Straatsma et al., NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations, Comput. Phys. Commun, vol.181, pp.1477-1489, 2010.

V. Barone, M. Cossi, and J. Tomasi, A new definition of cavities for the computation of solvation free energies by the polarizable continuum model, J. Chem. Phys, vol.107, pp.3210-3221, 1997.

M. Cossi, N. Rega, G. Scalmani, and V. Barone, Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model, J. Comput. Chem, vol.24, pp.669-681, 2003.

J. Champion, C. Alliot, E. Renault, B. M. Mokili, M. Chérel et al., Astatine standard redox potentials and speciation in acidic medium, J. Phys. Chem. A, vol.114, pp.576-582, 2010.
URL : https://hal.archives-ouvertes.fr/in2p3-00450771

J. Champion, A. Sabatié-gogova, F. Bassal, T. Ayed, C. Alliot et al., Investigation of astatine(III) hydrolyzed species: Experiments and relativistic calculations, J. Phys. Chem. A, vol.117, pp.1983-1990, 2013.
URL : https://hal.archives-ouvertes.fr/in2p3-00804191

N. Guo, D. Sergentu, D. Teze, J. Champion, G. Montavon et al., The heaviest possible ternary trihalogen species, IAtBr ? , evidenced in aqueous solution: An experimental performance driven by computations, Angew. Chem. Int. Ed, vol.55, pp.15369-15372, 2016.
URL : https://hal.archives-ouvertes.fr/in2p3-01405047

N. Guo, R. Maurice, D. Teze, J. Graton, J. Champion et al., Experimental and computational evidence of halogen bonds involving astatine, Nat. Chem, vol.10, pp.428-434, 2018.
URL : https://hal.archives-ouvertes.fr/in2p3-01769551

D. Sergentu, M. Amaouch, J. Pilmé, N. Galland, and R. Maurice, Electronic structures and geometries of the XF 3 (X = Cl, Br, I, At) fluorides, J. Chem. Phys, vol.143, p.114306, 2015.
URL : https://hal.archives-ouvertes.fr/in2p3-01201552

D. Sergentu, F. Réal, G. Montavon, N. Galland, and R. Maurice, Unraveling the hydrationinduced ground-state change of AtO + by relativistic and multiconfigurational wave-functionbased methods, Phys. Chem. Chem. Phys, vol.18, pp.32703-32712, 2016.

I. Denden, F. Poineau, M. L. Schlegel, J. Roques, P. L. Solari et al., Behavior of heptavalent technetium in sulfuric acid under ?-irradiation: Structural determination of technetium sulfate complexes by X-ray absorption spectroscopy and first principles calculations, J. Phys. Chem. A, vol.118, pp.1568-1575, 2014.
URL : https://hal.archives-ouvertes.fr/in2p3-01130401

M. Ferrier, J. Roques, F. Poineau, A. P. Sattelberger, J. Unger et al., Speciation of technetium in sulfuric acid/hydrogen sulfide solutions, Eur. J. Inorg. Chem, pp.2046-2052, 2014.
URL : https://hal.archives-ouvertes.fr/in2p3-00993356

L. Visscher and K. G. Dyall, Relativistic and correlation effects on molecular properties. I. the dihalogens F 2 , Cl 2 , Br 2 , I 2 , and At 2, J. Chem. Phys, vol.104, pp.9040-9046, 1996.

S. Höfener, R. Ahlrichs, S. Knecht, and L. Visscher, Relativistic and non-relativistic electronic molecular-structure calculations for dimers of 4p-, 5p-, and 6p-block elements, ChemPhysChem, vol.13, pp.3952-3957, 2012.

J. Pilmé, E. Renault, T. Ayed, G. Montavon, and N. Galland, Introducing the ELF topological analysis in the field of quasirelativistic quantum calculations, J. Chem. Theory Comput, vol.8, pp.2985-2990, 2012.

J. G. Hill and X. Hu, Theoretical insights into the nature of halogen bonding in prereactive complexes, Chem. Eur. J, vol.19, pp.3620-3628, 2013.

J. Pilmé, E. Renault, F. Bassal, M. Amaouch, G. Montavon et al., QTAIM analysis in the context of quasirelativistic quantum calculations, J. Chem. Theory Comput, vol.10, pp.4830-4841, 2014.

N. Galland, G. Montavon, J. Questel, and J. Graton, Quantum calculations of Atmediated halogen bonds: on the influence of relativistic effects, Advance Article, vol.42, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02004380

E. H. Appelman, E. N. Sloth, and M. H. Studier, Observation of astatine compounds by time-of-flight mass spectrometry, Inorg. Chem, vol.5, pp.766-769, 1966.

R. Ludwig, S. Fischer, H. Hussein, M. Frind, and R. Dreyer, Stability constants of At(I)-complexes with thiourea, iodide and mixed ligands in ethanol and water, J. Radioanal. Nucl

, Chem, vol.134, pp.141-149, 1989.

P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields, J. Phys. Chem, vol.98, pp.11623-11627, 1994.

K. R. Loos and A. C. Jones, Structure of triiodide ion in solution. Raman evidence for the existence of higher polyiodide species, J. Phys. Chem, vol.78, pp.2306-2307, 1974.

B. Braïda and P. C. Hiberty, Application of the valence bond mixing configuration diagrams to hypervalency in trihalide anions: A challenge to the Rundle-Pimentel model, J. Phys

, Chem. A, vol.112, pp.13045-13052, 2008.

B. Braïda and P. C. Hiberty, What makes the trifluoride anion F ? 3 so special? A breathingorbital valence bond ab initio study, J. Am. Chem. Soc, vol.126, pp.14890-14898, 2004.

G. Cavallo, P. Metrangolo, R. Milani, T. Pilati, A. Priimagi et al., The halogen bond, Chem. Rev, vol.116, pp.2478-2601, 2016.

C. Laurence, J. Graton, M. Berthelot, and M. J. El-ghomari, The diiodine basicity scale: Toward a general halogen-bond basicity scale, Chem. Eur. J, vol.17, pp.10431-10444, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02143159

Y. Zhao and D. G. Truhlar, Design of density functionals that are broadly accurate for thermochemistry, thermochemical kinetics, and nonbonded interactions, J. Phys. Chem. A, vol.109, pp.5656-5667, 2005.

D. F. Smith, The microwave spectrum and structure of chlorine trifluoride, J. Chem. Phys, vol.21, pp.609-614, 1953.

H. S. Muller, The rotational spectrum of chlorine trifluoride, ClF 3 . Centrifugal distortion analysis, Cl nuclear magnetic shielding tensor, structure, and the harmonic force field

, Chem. Chem. Phys, vol.3, pp.1570-1575, 2001.

D. W. Magnuson, Microwave spectrum and molecular structure of bromine trifluoride, J. Chem. Phys, vol.27, pp.223-226, 1957.

S. Hoyer and K. Seppelt, The structure of IF 3, Angew. Chem. Int. Ed, vol.39, pp.1448-1449, 2000.

P. Schwerdtfeger, Second-order Jahn-Teller distortions in group 17 fluorides EF 3 (E = Cl, Br, I, and At), J. Chem. Phys, vol.100, pp.2968-2973, 1996.

C. Bae, Y. Han, and Y. S. Lee, Spin-orbit and relativistic effects on structures and stabilities of group 17 fluorides EF 3 (E = I, At, and element 117): Relativity induced stability for the D 3h structure of (117)F 3, J. Phys. Chem. A, vol.107, pp.852-858, 2003.

H. Kim, Y. J. Choi, and Y. S. Lee, Spin-orbit and electron correlation effects on the structure of EF 3 (E = I, At, and element 117), J. Phys. Chem. B, vol.112, pp.16021-16029, 2008.

D. Yang and F. Wang, Structures and stabilities of group 17 fluorides EF 3 (E = I, At, and element 117) with spin-orbit coupling, Phys. Chem. Chem. Phys, vol.14, pp.15816-15825, 2012.

J. P. Perdew, M. Ernzerhof, and K. Burke, Rationale for mixing exact exchange with density functional approximations, J. Chem. Phys, vol.105, pp.9982-9985, 1996.

C. Adamo and V. Barone, Toward reliable density functional methods without adjustable parameters: The PBE0 model, J. Chem. Phys, vol.110, pp.6158-6170, 1999.

M. Amaouch, D. Sergentu, D. Steinmetz, R. Maurice, N. Galland et al., The bonding picture in hypervalent XF 3 (X = Cl, Br, I, At) fluorides revisited with quantum chemical topology, J. Comput. Chem, vol.38, pp.2753-2762, 2017.
URL : https://hal.archives-ouvertes.fr/in2p3-01628255

J. Rota, S. Knecht, T. Fleig, D. Ganyushin, T. Saue et al., Zero field splitting of the chalcogen diatomics using relativistic correlated wave-function methods, J. Chem. Phys, vol.135, p.114106, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00760776

T. Ayed, M. Seydou, F. Réal, G. Montavon, and N. Galland, How does the solvation unveil
URL : https://hal.archives-ouvertes.fr/in2p3-00840063

+. Ato and . Reactivity, J. Phys. Chem. B, vol.117, pp.5206-5211, 2013.

T. Ayed, F. Réal, G. Montavon, and N. Galland, Rationalization of the solvation effects on the AtO + ground-state change, J. Phys. Chem. B, vol.117, pp.10589-10595, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01231233

A. S. Gomes, F. Réal, N. Galland, C. Angeli, R. Cimiraglia et al., Electronic structure investigation of the evanescent AtO + ion, Phys. Chem. Chem. Phys, vol.16, pp.9238-9248, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01077537

V. Vallet, L. Maron, C. Teichteil, and J. Flament, A two-step uncontracted determinantal effective Hamiltonian-based SO-CI method, J. Chem. Phys, vol.113, pp.1391-1402, 2000.

D. Sergentu, G. David, G. Montavon, R. Maurice, and N. Galland, Scrutinizing "invisible" astatine: A challenge for modern density functionals, J. Comput. Chem, vol.37, pp.1345-1354, 2016.
URL : https://hal.archives-ouvertes.fr/in2p3-01312975

A. S. Gomes and L. Visscher, The influence of core correlation on the spectroscopic constants of HAt, Chem. Phys. Lett, vol.399, pp.1-6, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00820885

J. Heyd, G. E. Scuseria, and M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential, J. Chem. Phys, vol.118, pp.8207-8215, 2003.

D. A. Pantazis, X. Chen, C. R. Landis, and F. Neese, All-electron scalar relativistic basis sets for third-row transition metal atoms, J. Chem. Theory Comput, vol.4, pp.908-919, 2008.

D. A. Pantazis and F. Neese, All-electron scalar relativistic basis sets for the 6p elements, Theor. Chem. Acc, vol.131, p.1292, 2012.

D. Sergentu, D. Teze, A. Sabatié-gogova, C. Alliot, N. Guo et al., Advances on the determination of the astatine pourbaix diagram: Predomination of AtO(OH) ? 2 over At ? in basic conditions, Chem. Eur. J, vol.22, pp.2964-2971, 2016.
URL : https://hal.archives-ouvertes.fr/in2p3-01274072

L. Andrews, B. Liang, J. Li, and B. E. Bursten, Ground-state reversal by matrix interaction: Electronic states and vibrational frequencies of CUO in solid argon and neon, Angew. Chem. Int. Ed, vol.39, pp.4565-4567, 2010.

J. Li, B. E. Bursten, B. Liang, and L. Andrews, Noble gas-actinide compounds: Complexation of the CUO molecule by Ar, Kr, and Xe atoms in noble gas matrices, Science, vol.295, pp.2242-2245, 2002.

J. Li, B. E. Bursten, L. Andrews, and C. J. Marsden, On the electronic structure of molecular UO 2 in the presence of Ar atoms: Evidence for direct U-Ar bonding, J. Am. Chem. Soc, vol.126, pp.3424-3425, 2004.

I. Infante, L. Andrews, X. Wang, and L. Gagliardi, Noble gas matrices may change the electronic structure of trapped molecules: The UO 2 (Ng) 4 [Ng=Ne, Ar] case, Chem. Eur. J, vol.16, pp.12804-12807, 2010.

S. Rothe, A. N. Andreyev, S. Antalic, A. Borschevsky, L. Capponi et al.,

P. Sjödin, . Van-den, P. Bergh, M. Van-duppen, Y. Venhart et al., Measurement of the first ionization potential of astatine by laser ionization spectroscopy

. Commun, , vol.4, p.1835, 2013.

A. Borschevsky, L. F. Pa?teka, V. Pershina, E. Eliav, and U. Kaldor, Ionization potentials and electron affinities of the superheavy elements 115-117 and their sixth-row homologues Bi, Po, and At, Phys. Rev. A, vol.91, p.20501, 2015.

D. R. Herrick, Connecting Pauling and Mulliken electronegativities, J. Chem. Theory Comput, vol.1, pp.255-260, 2005.

R. E. Vernon, Which elements are metalloids?, J. Chem. Edu, vol.90, pp.1703-1707, 2013.

A. Allred, Electronegativity values from thermochemical data, J. Inorg. Nucl. Chem, vol.17, pp.215-221, 1961.

S. W. Hadley, D. S. Wilbur, M. A. Gray, and R. W. Atcher, Astatine-211 labeling of an antimelanoma antibody and its Fab fragment using N -succinimidyl p-astatobenzoate: Comparisons in vivo with the p-[ 125 I]iodobenzoyl conjugate, Bioconjugate Chem, vol.2, pp.171-179, 1991.

L. Vasharosh, Y. V. Norseev, and V. A. Khalkin, Determination of carbon-astatine chemical bond breaking energy, Dokl. Akad. Nauk SSSR, vol.263, pp.119-123, 1982.

J. B. Pedley, R. D. Naylor, and S. P. Kirby, Thermodynamic data of organic compounds, 1986.

L. Gagliardi and B. O. Roos, Quantum chemical calculations show that the uranium molecule U 2 has a quintuple bond, Nature, vol.433, pp.848-851, 2005.

A. P. Sattelberger and M. J. Johnson, Uncovering the uranium-nitrogen triple bond, Science, vol.337, pp.652-653, 2012.

X. Li, Metalophilic interaction in gold halide: Quantum chemical study of AuX (X=F-At)

, J. Comput. Chem, vol.35, pp.923-931, 2014.

R. F. Bader, A quantum theory of molecular structure and its applications, Chem. Rev, vol.91, pp.893-928, 1991.

B. Silvi and A. Savin, Classification of chemical bonds based on topological analysis of electron localization functions, Nature, vol.371, pp.683-686, 1994.

C. Van-wüllen, Spin densities in two-component relativistic density functional calculations: Noncollinear versus collinear approach, J. Comput. Chem, vol.23, pp.779-785, 2002.

L. Visscher, H. J. Aa, R. Jensen, T. Bast, K. G. Saue-;-bakken et al.,

P. Jerabek, B. Schuetrumpf, P. Schwerdtfeger, and W. Nazarewicz, Electron and nucleon localization functions of oganesson: Approaching the Thomas-Fermi limit, Phys. Rev. Lett, vol.120, p.53001, 2018.

B. O. Roos, A. C. Borin, and L. Gagliardi, Reaching the maximum multiplicity of the covalent chemical bond, Angew. Chem. Int. Ed, vol.46, pp.1469-1472, 2007.

F. Gendron, B. L. Guennic, J. Autschbach, ;. , L. No et al., Magnetic properties and electronic structures of Ar 3 U IV -L complexes with Ar = C 5 (CH 3 ) 4 H ? or C 5 H 5

, Chem, vol.53, pp.13174-13187, 2014.

P. Löwdin and H. Shull, Natural orbitals in the quantum theory of two-electron systems, Phys. Rev, vol.101, pp.1730-1739, 1956.

F. Gendron, D. Páez-hernández, F. Notter, B. Pritchard, H. Bolvin et al., Magnetic properties and electronic structure of neptunyl(VI) complexes: Wavefunctions, orbitals, and crystal-field models, Chem. Eur. J, vol.20, pp.7994-8011, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01071994

K. Giesbertz, Are natural orbitals useful for generating an efficient expansion of the wave function?, Chem. Phys. Lett, vol.591, pp.220-226, 2014.

A. D. Becke and K. E. Edgecombe, A simple measure of electron localization in atomic and molecular systems, J. Chem. Phys, vol.92, pp.5397-5403, 1990.

M. Kohout and A. Savin, Atomic shell structure and electron numbers, Int. J. Quantum Chem, vol.60, pp.875-882, 1996.

A. Savin, B. Silvi, and F. Colonna, Topological analysis of the electron localization function applied to delocalized bonds, Can. J. Chem, vol.74, pp.1088-1096, 1996.

L. Zhang, F. Ying, W. Wu, P. C. Hiberty, and S. Shaik, Topology of electron charge density for chemical bonds from valence bond theory: A probe of bonding types, Chem. Eur. J, vol.15, pp.2979-2989, 2009.

S. Shaik, D. Danovich, B. Silvi, D. L. Lauvergnat, and P. C. Hiberty, Charge-shift bonding-A class of electron-pair bonds that emerges from valence bond theory and is supported by the electron localization function approach, Chem. Eur. J, vol.11, pp.6358-6371, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00126509

S. Shaik, D. Danovich, W. Wu, and P. C. Hiberty, Charge-shift bonding and its manifestations in chemistry, Nat. Chem, vol.1, pp.443-449, 2009.

H. Zhang, D. Danovich, W. Wu, B. Braïda, P. C. Hiberty et al., Charge-shift bonding emerges as a distinct electron-pair bonding family from both valence bond and molecular orbital theories, J. Chem. Theory Comput, vol.10, pp.2410-2418, 2014.

T. Ayed, J. Pilmé, D. Tézé, F. Bassal, J. Barbet et al., 211 At-labeled agents for alpha-immunotherapy: On the in vivo stability of astatine-agent bonds, Eur. J. Med. Chem, vol.116, pp.156-164, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01414904

H. J. Werner, P. J. Knowles, R. Lindh, F. R. Manby, M. Schtz et al.,

M. J. Cooper, A. J. Deegan, F. Dobbyn, E. Eckert, C. Goll et al.,

S. Noury, X. Krokidis, F. Fuster, and B. Silvi, Computational tools for the electron localization function topological analysis, Comput. Chem, vol.23, pp.597-604, 1999.

E. Matito, B. Silvi, M. Duran, and M. Solà, Electron localization function at the correlated level, J. Chem. Phys, vol.125, p.24301, 2006.

F. Feixas, E. Matito, M. Duran, M. Solà, and B. Silvi, Electron localization function at the correlated level: A natural orbital formulation, J. Chem. Theory Comput, vol.6, pp.2736-2742, 2010.

A. Younes, G. Montavon, C. Alliot, M. Mokili, F. Haddad et al., A route for polonium 210 production from alpha-particle irradiated bismuth-209 target. Radiochim, Acta, vol.102, pp.681-689, 2014.
URL : https://hal.archives-ouvertes.fr/in2p3-01010060

A. Younes, G. Montavon, S. G. Gouin, E. Andre-joyaux, R. Peumery et al., Investigation of a new "N 2 S 2 O 2 " chelating agent with high Po(IV) affinity, Chem. Commun, vol.53, pp.6492-6495, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01536735

N. Iwahara and L. F. Chibotaru, Exchange interaction between J multiplets, Phys. Rev. B, vol.91, p.174438, 2015.

M. B. Robin and P. Day, Mixed Valence Chemistry-A Survey and Classification, Advances in Inorganic Chemistry and Radiochemistry

. Sharpe, , pp.247-422, 1968.

P. C. Hiberty, S. Humbel, D. Danovich, and S. Shaik, What is physically wrong with the description of odd-electron bonding by Hartree-Fock theory? A simple nonempirical remedy

, J. Am. Chem. Soc, vol.117, pp.9003-9011, 1995.

L. Song, Y. Mo, Q. Zhang, and W. Wu, XMVB: A program for ab initio nonorthogonal valence bond computations, J. Comput. Chem, vol.26, pp.514-521, 2005.

*. R. Maurice, R. Bastardis, C. De-graaf, N. Suaud, T. Mallah et al., Universal theoretical approach to extract anisotropic spin Hamiltonians, J. Chem. Theo. Comput, vol.5, pp.2977-2984, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00862784

,

R. Maurice, A. Pradipto, C. De-graaf, R. Broer, and *. , Magnetic interactions in LiCu 2 O 2 : Single-chain versus double-chain models, Phys. Rev. B, vol.86, p.24411, 2012.
URL : https://hal.archives-ouvertes.fr/in2p3-01631019

,

F. D. Sergentu, G. Réal, N. Montavon, *. Galland, and R. Maurice, Unravelling the hydrationinduced ground-state change of AtO + by relativistic and multiconfigurational wave-functionbased methods, Phys. Chem. Chem. Phys, vol.18, pp.32703-32712, 2016.

,

D. Teze, *. , D. Sergentu, V. Kalichuk, J. Barbet et al., Targeted radionuclide therapy with astatine-211: Oxidative dehalogenation of astatobenzoate conjugates, Sci. Rep, vol.7, p.2579, 2017.
URL : https://hal.archives-ouvertes.fr/in2p3-01529705

,

R. Maurice, *. , F. Réal, A. S. Gomes, V. Vallet et al., Effective bond orders from two-step spin-orbit coupling approaches: The I 2 , At 2 , IO + and AtO + case studies, Chemical bonding in heavy-(radio)element systems: 5, vol.142, p.94305, 2015.
URL : https://hal.archives-ouvertes.fr/in2p3-01123856

,

A. Caneschi, D. Gatteschi, R. Sessoli, A. L. Barra, L. C. Brunel et al., J. Am. Chem. Soc, vol.113, p.5873, 1991.

J. R. Friedman, M. P. Sarachik, J. Tejada, and R. Ziolo, Phys. ReV. Lett, p.3830, 1996.

C. Thomas, F. Lionti, R. Ballou, D. Gatteschi, R. Sessoli et al., Nature, vol.383, p.145, 1996.

D. Gatteschi and R. Sessoli, Angew. Chem., Int. Ed, vol.42, p.246, 2003.

D. Gatteschi and R. Sessoli, Villain J. Molecular Nanomagnets

F. Neese and . Orca, Version 2.6; an ab initio, density functional and semiempirical program package, 2008.

S. Sinnecker, F. Neese, L. Noodleman, and W. Lubitz, J. Am. Chem. Soc, vol.126, p.2613, 2004.

F. Neese and E. I. Solomon, Inorg. Chem, p.6568, 1998.

D. Ganyushin and F. Neese, J. Chem. Phys, p.24103, 2006.

F. Neese, J. Am. Chem. Soc, vol.128, p.10213, 2006.

F. Neese, J. Chem. Phys, p.164112, 2007.

M. R. Pederson and S. N. Khanna, Phys. ReV. B: Condens. Matter, vol.60, p.9566, 1999.

J. Kortus, M. R. Pederson, T. Baruah, N. Bernstein, and C. S. Hellberg, Polyhedron, vol.22, p.1871, 2003.

A. V. Postnikov, J. Kortus, and M. R. Pederson, Phys. Status Solidi B, p.9497, 2006.

K. A. Jackson and M. R. Pederson, Phys. ReV. B: Condens. Matter, vol.42, p.3276, 1990.

M. R. Pederson and K. A. Jackson, Phys. ReV. B: Condens. Matter, vol.41, 1990.

R. Reviakine, A. Arbuznikov, J. C. Tremblay, C. Remenyi, O. Malkina et al., J. Phys. Chem, p.54110, 2006.

V. G. Malkin, O. L. Malkina, R. Reviakine, and . Program,

E. Ruiz, J. Cirera, J. Cano, S. Alvarez, C. Loose et al., J. Chem. Commun, 2008.

C. Loose, E. Ruiz, B. Kersting, and . Kortus, J. Chem. Phys. Lett, p.38, 2008.

Z. Havlas, J. W. Downing, and J. Michl, J. Phys. Chem. A, p.5681, 1998.

M. Engström, O. Vahtras, and H. Ågren, Chem. Phys. Lett, p.483, 2000.

G. Karlström, R. Lindh, P. Malmqvist, B. O. Roos, U. Ryde et al., Comput. Mater. Sci, vol.28, p.222, 2003.

L. Chibotaru, L. Ungur, and A. Soncini, Angew. Chem., Int. Ed, vol.120, p.4194, 2008.

S. Petit, G. Pilet, D. Luneau, L. F. Chibotaru, L. D. Ungur et al., , p.4582, 2007.

A. Soncini and L. F. Chibotaru, Phys. ReV. B: Condens. Matter, vol.77, p.220406, 2008.

L. F. Chibotaru, L. Ungur, C. Aronica, H. Elmoll, G. Pilet et al., J. Am. Chem. Soc, vol.130, p.12445, 2008.

C. Sousa and C. De-graaf, Int. J. Quantum Chem, p.2470, 2006.

C. J. Calzado, J. Cabrero, J. P. Malrieu, and R. Caballol, J. Chem. Phys, p.2728, 2002.

C. J. Calzado, J. Cabrero, J. P. Malrieu, and R. Caballol, J. Chem. Phys, p.3985, 2002.

C. J. Calzado and J. P. Malrieu, Phys. ReV. B: Condens. Matter, vol.63, p.214520, 2001.

E. Bordas, C. De-graaf, R. Caballol, and C. J. Calzado, Phys. ReV. B: Condens. Matter, p.45108, 2005.

N. Guihéry and J. P. Malrieu, J. Chem. Phys, vol.119, p.8956, 2003.

D. Taratiel and N. Guihéry, J. Chem. Phys, p.7127, 2004.

R. Bastardis, N. Guihéry, and C. De-graaf, Phys. ReV. B: Condens. Matter, vol.74, p.14432, 2006.

N. Guihéry, Theor. Chem. Acc, vol.116, p.576, 2006.

R. Bastardis, N. Guihéry, N. Suaud, and C. De-graaf, J. Chem. Phys, p.125, 2006.

R. Bastardis, N. Guihéry, and N. Suaud, Phys. ReV. B: Condens. Matter, vol.75, p.132403, 2007.

R. Bastardis, N. Guihéry, and C. De-graaf, Phys. ReV. B: Condens. Matter, vol.77, p.54426, 2008.

P. R. De, I. Moreira, N. Suaud, N. Guihéry, J. P. Malrieu et al., Phys. ReV. B: Condens. Matter, p.134430, 2002.

R. Bastardis, N. Guihéry, and C. De-graaf, Phys. ReV. B: Condens. Matter, p.132412, 2007.

C. J. Calzado, C. De-graaf, E. Bordas, R. Caballol, and J. P. Malrieu, Phys. ReV. B: Condens. Matter, vol.67, p.132409, 2003.

R. Bo?a, Theoretical Foundations of Molecular Magnetism

R. Bo?a and . Coord, Chem. ReV, vol.248, p.757, 2004.

K. N. Park, M. R. Pederson, S. L. Richardson, N. Aliaga-alcalde, and G. Christou, Phys. ReV. B: Condens. Matter, vol.68, p.20405, 2003.

G. Rogez, J. N. Rebilly, A. L. Barra, L. Sorace, G. Blondin et al., Angew. Chem., Int. Ed, p.1876, 2005.

G. Charron, F. Bellot, F. Cisnetti, G. Pelosi, J. N. Rebilly et al., Chem. Eur. J, vol.13, p.2774, 2007.

J. N. Rebilly, G. Charron, E. Riviere, R. Guillot, A. L. Barra et al., Chem. Eur. J, vol.14, p.1169, 2008.

J. Krzystek, S. A. Zvyagin, A. Ozarowski, A. T. Fiedler, T. C. Brunold et al., J. Am. Chem. Soc, vol.126, p.2148, 2004.

R. L. Carlin, R. D. Chirico, E. Sinn, G. Mennenga, and L. J. De-jongh, Inorg. Chem, 1982.

P. Malmqvist and B. O. Roos, Chem. Phys. Lett, p.189, 1989.

P. Malmqvist, B. O. Roos, and B. Schimmelpfennig, Chem. Phys. Lett, p.230, 2002.

N. Douglas and N. M. Kroll, Ann. Phys, vol.82, p.89, 1974.

B. Hess, Phys. ReV. A: At., Mol., Opt. Phys, p.3742, 1986.

R. Llusar, M. Casarrubios, Z. Barandiarán, and L. Seijo, J. Chem. Phys, p.5321, 1996.

Z. Baradiarán and L. Seijo, J. Chem. Phys, vol.118, p.7439, 2003.

B. O. Roos, R. Lindh, ;. Malmqvist, P. Veryazov, V. Widmark et al., J. Phys. Chem. A, vol.109, p.6575, 2005.

C. Bloch, Nucl. Phys, vol.6, p.329, 1958.

, J. Nucl. Phys, p.321, 1920.

T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima et al., Nature, vol.426, p.55, 2003.

A. A. Gippius, E. N. Morozova, A. S. Moskvin, A. V. Zalessky, A. A. Bush et al., Phys. Rev. B, vol.70, p.20406, 2004.

T. Masuda, A. Zheludev, A. Bush, M. Markina, and A. Vasiliev, Phys. Rev. Lett, vol.92, p.177201, 2004.

T. Masuda, A. Zheludev, B. Roessli, A. Bush, M. Markina et al., Phys. Rev. B, vol.72, p.14405, 2005.

S. Park, Y. J. Choi, C. L. Zhang, and S. Cheong, Phys. Rev. Lett, vol.98, p.57601, 2007.

S. Drechsler, J. Málek, J. Richter, A. S. Moskvin, A. A. Gippius et al., Phys. Rev. Lett, vol.94, p.39705, 2005.

T. Masuda, A. Zheludev, A. Bush, M. Markina, and A. Vasiliev, Phys. Rev. Lett, vol.94, p.39706, 2005.

A. S. Moskvin and S. Drechsler, Phys. Rev. B, vol.78, p.24102, 2008.

S. Seki, Y. Yamasaki, M. Soda, M. Matsuura, K. Hirota et al., Phys. Rev. Lett, vol.100, p.127201, 2008.

C. Fang, T. Datta, and J. Hu, Phys. Rev. B, vol.79, p.14107, 2009.

A. S. Moskvin, Y. D. Panov, and S. Drechsler, Phys. Rev. B, vol.79, p.104112, 2009.

S. Furukawa, M. Sato, and S. Onoda, Phys. Rev. Lett, vol.105, p.257205, 2010.

H. Katsura, N. Nagaosa, and A. V. Balatsky, Phys. Rev. Lett, vol.95, p.57205, 2005.

M. Mostovoy, Phys. Rev. Lett, vol.96, p.67601, 2006.

L. Zhao, K. Yeh, S. M. Rao, T. Huang, P. Wu et al., , vol.97, p.37004, 2012.

P. R. I.-de, F. Moreira, C. J. Illas, J. F. Calzado, and J. Sanz,

N. B. Malrieu, D. Amor, and . Maynau, Phys. Rev. B, vol.59, p.6593, 1999.

C. J. Calzado, J. Cabrero, J. P. Malrieu, and R. Caballol, J. Chem. Phys, vol.116, p.2728, 2002.

C. J. Calzado, J. Cabrero, J. P. Malrieu, and R. Caballol, J. Chem. Phys, vol.116, p.3985, 2002.

C. J. Calzado, C. Angeli, D. Taratiel, R. Caballol, and J. Malrieu, J. Chem. Phys, vol.131, p.44327, 2009.

J. Miralles, O. Castell, R. Caballol, and J. Malrieu, Chem. Phys, vol.172, p.33, 1993.

C. Bloch, Nucl. Phys, vol.6, p.329, 1958.

R. Maurice, A. M. Pradipto, N. Guihéry, R. Broer, and C. De-graaf, J. Chem. Theor. Comput, vol.6, p.3092, 2010.

A. Pradipto, R. Maurice, N. Guihéry, C. De-graaf, and R. Broer, Phys. Rev. B, vol.85, p.14409, 2012.

R. Berger, P. Önnerud, and R. Tellgren, J. Alloys Comp, vol.184, p.315, 1992.

C. De-graaf, I. De, P. R. Moreira, and F. Illas, Int. J. Mol. Sci, vol.1, p.28, 2000.

C. De-graaf, I. De, P. R. Moreira, F. Illas, O. Iglesias et al., Phys. Rev. B, vol.66, p.14448, 2002.

Z. Barandiaran and L. Seijo, J. Chem. Phys, vol.89, p.5739, 1988.

R. Dovesi, V. R. Saunders, C. Roetti, R. Orlando, C. M. Zicovich-wilson et al.,

F. Aquilante, L. De, N. Vico, G. Ferre, P. A. Ghigo et al., J. Comp. Chem, vol.31, p.224, 2010.

, MAGNETIC INTERACTIONS IN LiCu, vol.2, issue.2

, PHYSICAL REVIEW B, vol.86, p.24411, 2012.

K. Doll and N. M. Harrison, Chem. Phys. Lett, vol.317, p.282, 2000.

P. R. I.-de, F. Moreira, and . Illas, PhysChemChemPhys, vol.8, p.1645, 2006.

R. L. Martin and F. Illas, Phys. Rev. Lett, vol.79, p.1539, 1997.

D. Maynau and N. Ben-amor,

L. Hozoi, L. Siurakshina, P. Fulde, J. Van-den, and . Brink, Nature Sci. Rep, vol.1, p.65, 2011.

H. Huang, N. A. Bogdanov, L. Siurakshina, P. Fulde, J. Van-den et al., Phys. Rev. B, vol.84, p.235125, 2011.

B. O. Roos, R. Lindh, P. A. Målmqvist, V. Veryazov, and P. O. Widmark, J. Phys. Chem. A, vol.109, p.6575, 2005.

S. Blundell, Magnetism in Condensed Matter, 2001.

T. Moriya, Phys. Rev, vol.120, p.91, 1960.

A. D. Buckingham, P. Pyykko, J. B. Robert, and L. Wiesenfeld, Mol. Phys, vol.46, p.177, 1982.

L. Andrews, B. Liang, J. Li, and B. E. Bursten, Angew. Chem, vol.112, pp.4739-4741, 2000.

J. Li, B. E. Bursten, B. Liang, and L. Andrews, Science, vol.295, pp.2242-2245, 2002.

J. Li, B. E. Bursten, L. Andrews, and C. J. Marsden, J. Am. Chem. Soc, vol.126, pp.3424-3425, 2004.

I. Infante, L. Andrews, X. Wang, and L. Gagliardi, Chem. -Eur. J, vol.16, pp.12804-12807, 2010.

T. Ayed, M. Seydou, F. Réal, G. Montavon, and N. Galland, J. Phys. Chem. B, vol.117, pp.5206-5211, 2013.

T. Ayed, F. Réal, G. Montavon, and N. Galland, J. Phys. Chem. B, vol.117, pp.10589-10595, 2013.

A. S. Gomes, F. Réal, N. Galland, C. Angeli, R. Cimiraglia et al., Phys. Chem. Chem. Phys, vol.16, pp.9238-9248, 2014.

R. Maurice, F. Réal, A. S. Gomes, V. Vallet, G. Montavon et al., J. Chem. Phys, p.94305, 2015.

J. Champion, M. Seydou, A. Sabatié-gogova, E. Renault, G. Montavon et al., Phys. Chem. Chem. Phys, vol.13, pp.14984-14992, 2011.

J. Champion, A. Sabatié-gogova, F. Bassal, T. Ayed, C. Alliot et al., J. Phys. Chem. A, vol.117, 1983.

D. Sergentu, D. Teze, A. Sabatié-gogova, C. Alliot, N. Guo et al., Chem. -Eur. J, vol.22, pp.2964-2971, 2016.

J. Champion, C. Alliot, E. Renault, B. M. Mokili, M. Chérel et al., J. Phys. Chem. A, vol.114, pp.576-582, 2010.

A. Sabatié-gogova, J. Champion, S. Huclier, N. Michel, F. Pottier et al., Anal. Chim

. Acta, , vol.721, pp.182-188, 2012.

D. S. Wilbur, Nat. Chem, issue.5, p.246, 2013.

M. R. Zalutsky and M. Pruszynski, Curr. Radiopharm, vol.4, pp.177-185, 2011.

D. S. Wilbur, 27:15. View Article Online, vol.1, pp.144-176, 2008.

, Phys. Chem. Chem. Phys, vol.18, pp.32703-32712, 2016.

, This journal is © the Owner Societies, 2016.

S. G. Dimagno and . Pat, , pp.20140275539-1, 2014.

M. Amaouch, G. Montavon, N. Galland, and J. Pilmé, Mol. Phys, vol.114, pp.1326-1333, 2016.

T. Ayed, J. Pilmé, D. Tézé, F. Bassal, J. Barbet et al., Eur. J. Med. Chem, vol.116, pp.156-164, 2016.

J. Rota, S. Knecht, T. Fleig, D. Ganyushin, T. Saue et al., J. Chem. Phys, 2011.

Y. Zhao and D. G. Truhlar, Theor. Chem. Acc, vol.120, pp.215-241, 2008.

D. Sergentu, G. David, G. Montavon, R. Maurice, and N. Galland, J. Comput. Chem, vol.37, pp.1345-1354, 2016.

J. P. Perdew, M. Ernzerhof, and K. Burke, J. Chem. Phys, vol.105, pp.9982-9985, 1996.

C. Adamo and V. Barone, J. Chem. Phys, vol.110, pp.6158-6170, 1999.

D. Sergentu, M. Amouch, J. Pilmé, N. Galland, and R. Maurice, J. Chem. Phys, p.114306, 2015.

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb et al., , 2009.

K. A. Peterson, D. Figgen, E. Goll, H. Stoll, and M. Dolg, J. Chem. Phys, vol.119, pp.11113-11123, 2003.

M. K. Armbruster, W. Klopper, and F. Weigend, Phys. Chem. Chem. Phys, vol.8, pp.4862-4865, 2006.

T. H. Dunning, J. Chem. Phys, vol.90, pp.1007-1023, 1989.

R. A. Kendall, T. H. Dunning, and R. J. Harrison, J. Chem. Phys, vol.96, pp.6796-6806, 1992.

B. O. Roos, P. R. Taylor, and P. E. Siegbahn, Chem. Phys, vol.48, pp.157-173, 1980.

B. O. Roos, Theory and applications of computational chemistry: The first forty years, vol.25, pp.725-764, 2005.

A. Celestino, R. Cimiraglia, and J. Malrieu, Chem. Phys. Lett, vol.350, pp.297-305, 2001.

K. G. Dyall, J. Chem. Phys, vol.102, pp.4909-4918, 1995.

H. J. Werner, P. J. Knowles, R. Lindh, F. R. Manby, M. Schütz et al., , 2009.

M. K. Armbruster, F. Weigend, C. Van-wullen, and W. Klopper, Phys. Chem. Chem. Phys, vol.10, pp.1748-1756, 2008.

. Turbomole-v6, TURBO-MOLE GmbH, 1989.

J. Pilmé, E. Renault, T. Ayed, G. Montavon, and N. Galland, J. Chem. Theory Comput, vol.8, pp.2985-2990, 2012.

A. Hermann, R. Hoffmann, and N. W. Ashcroft, Phys. Rev. Lett, 2013.

R. E. Vernon, J. Chem. Educ, vol.90, pp.1703-1707, 2013.

D. R. Corson, K. R. Mackenzie, and E. Segre, Astatine: the element of Atomic Number 85, Nature, vol.159, pp.24-24, 1947.

M. R. Zalutsky, D. A. Reardon, O. R. Pozzi, G. Vaidyanathan, and D. D. Bigner, Targeted alpha-particle radiotherapy with 211 Atlabeled monoclonal antibodies, Nucl. Med. Biol, vol.34, pp.779-85, 2007.

, Scientific RepoRts |, vol.7

G. Vaidyanathan and M. Zalutsky, Applications of 211 At and 223 Ra in Targeted Alpha-Particle Radiotherapy, Curr Radiopharm, vol.4, pp.283-294, 2011.

M. R. Zalutsky, Clinical experience with alpha-particle emitting 211 At: treatment of recurrent brain tumor patients with 211 Atlabeled chimeric antitenascin monoclonal antibody 81C6, J. Nucl. Med, vol.49, pp.30-38, 2008.

H. Andersson, Intraperitoneal alpha-particle radioimmunotherapy of ovarian cancer patients: pharmacokinetics and dosimetry of 211 At-MX35 F(ab') 2 -a phase I study, J. Nucl. Med, vol.50, pp.1153-60, 2009.

E. Aneheim, Automated astatination of biomolecules-a stepping stone towards multicenter clinical trials, Sci. Rep, vol.5, pp.1-11, 2015.

A. Steffen, Biodistribution of 211 At labeled HER-2 binding affibody molecules in mice, Oncol. Rep, vol.17, pp.1141-1147, 2007.

G. Vaidyanathan, M. R. Zalutsky, and . Radiopharmaceuticals, Prospects and Problems, Curr Radiopharm, vol.1, pp.1-42, 2008.

R. H. Larsen, S. Slade, and M. R. Zalutsky, Blocking [ 211 At]Astatide Accumulation in Normal Tissues: Preliminary Evaluation of Seven Potential Compounds, Nucl. Med. Biol, vol.25, pp.351-357, 1998.

S. W. Hadley, S. D. Wilbur, M. A. Gray, and R. W. Atcher, Astatine-211 Labeling of an Antimelanoma Antibody and Its Fab Fragment Using N-Succinimidyl p-Astatobenzoate: Comparisons in Vivo with the p-[ 125 I]Iodobenzoyl Conjugate, Bioconjugate Chem, vol.2, pp.171-179, 1991.

P. K. Garg, C. L. Harrison, and M. R. Zalutsky, Comparative Tissue Distribution in Mice of the ?-Emitter 211 At and 131 I as Labels of a Monoclonal Antibody and F(ab?) 2 Fragment, Cancer Res, vol.50, pp.3514-3520, 1990.

M. I. Persson, Astatinated trastuzumab, a putative agent for radionuclide immunotherapy of ErbB2-expressing tumours, Oncol. Rep, vol.15, pp.673-80, 2006.

A. M. Gustafsson, Comparison of therapeutic efficacy and biodistribution of 213 Bi-and 211 At-labeled monoclonal antibody MX35 in an ovarian cancer model, Nucl. Med. Biol, vol.39, pp.15-22, 2012.

M. R. Zalutsky, M. G. Stabin, R. H. Larsen, and D. D. Bigner, Tissue distribution and radiation dosimetry of astatine-211-labeled chimeric 81C6, an alpha-particle-emitting immunoconjugate, Nucl. Med. Biol, vol.24, pp.255-61, 1997.

D. S. Wilbur, Reagents for Astatination of Biomolecules. 2. Conjugation of Anionic Boron Cage Pendant Groups to a Protein Provides a Method for Direct Labeling that is Stable to in Vivo Deastatination, Bioconjugate Chem, vol.18, pp.1226-1240, 2007.

A. Orlova, H. Wållberg, S. Stone-elander, and V. Tolmachev, On the selection of a tracer for PET imaging of HER2-expressing tumors: direct comparison of a 124 I-labeled affibody molecule and trastuzumab in a murine xenograft model, J. nucl. med, vol.50, pp.417-442, 2009.

A. E. Bolton and W. M. Hunter, The labelling of proteins to high specific radioactivities by conjugation to a 125 I-containing acylating agent, Biochem. J, vol.133, pp.529-568, 1973.

R. Zalutsky and A. S. Narula, A Method for the Radiohalogenation of Proteins Resulting in Decreased Thyroid Uptake of Radioiodine, Appl. Radiat. Isot, vol.38, pp.1051-1055, 1987.

G. Vaidyanathan and M. R. Zalutsky, Preparation of N -succinimidyl 3-[*I]iodobenzoate: an agent for the indirect radioiodination of proteins, Nat. Protoc, vol.1, pp.707-713, 2006.

J. E. Friedman, J. A. Watson, and S. E. Rokita, Iodotyrosine Deiodinase Is the First Mammalian Member of the NADH Oxidase/Flavin Reductase Superfamily, J. Biol. Chem, vol.281, pp.2812-2819, 2006.

S. R. Thomas, P. M. Mctamney, J. M. Adler, N. Laronde-leblanc, and S. E. Rokita, Crystal Structure of Iodotyrosine Deiodinase, a Novel Flavoprotein Responsible for Iodide Salvage in Thyroid Glands, J. Biol. Chem, vol.284, 2009.

D. S. Wilbur, Biotin reagents in antibody pretargeting. 6. Synthesis and in vivo evaluation of astatinated and radioiodinated aryl-and nido-carboranyl-biotin derivatives, Bioconjug. Chem, vol.15, pp.601-616, 2004.

Y. Chen, Durable donor engraftment after radioimmunotherapy using alpha-emitter astatine-211 -labeled anti-CD45 antibody for conditioning in allogeneic hematopoietic cell transplantation, Blood, vol.119, pp.1130-1138, 2012.

J. J. Orozco, Anti-CD45 radioimmunotherapy using 211 At with bone marrow transplantation prolongs survival in a disseminated murine leukemia model, Blood, vol.121, pp.3759-3768, 2013.

D. J. Green, Astatine-211 conjugated to an anti-CD20 monoclonal antibody eradicates disseminated B-cell lymphoma in a mouse model, Blood, vol.125, pp.2111-2119, 2015.

D. S. Wilbur, M. Chyan, D. K. Hamlin, H. Nguyen, and R. L. Vessella, Reagents for Astatination of Biomolecules. 5. Evaluation of Hydrazone Linkers in 211At-and 125I-Labeled closo-Decaborate(2-) Conjugates of Fab as a Means of Decreasing Kidney Retention, Bioconjugate Chem, vol.22, pp.1089-1102, 2011.

A. Orlova, Targeting Against Epidermal Growth Factor Receptors. Cellular Processing of Astatinated EGF After Binding to Cultured Carcinoma Cells, Anticancer Res, vol.24, pp.4035-4041, 2004.

S. Rothe, Measurement of the first ionization potential of astatine by laser ionization spectroscopy, Nat. Commun, vol.4, pp.1-6, 2013.

D. S. Wilbur, Enigmatic astatine, Nat. Chem, vol.5, pp.246-246, 2013.

S. Carlin, R. J. Mairs, P. Welsh, and M. R. Zalutsky, Sodium-iodide symporter (NIS)-mediated accumulation of [ 211 At]astatide in NIS-transfected human cancer cells, Nucl. Med. Biol, vol.29, pp.729-739, 2002.

S. Carlin, G. Akabani, and M. R. Zalutsky, In Vitro Cytotoxicity of 211 At-Astatide and 131 I-Iodide to Glioma Tumor Cells Expressing the Sodium/Iodide Symporter, J. Nucl. Med, vol.44, pp.1827-1838, 2003.

T. Ayed, 211 At-labeled agents for alpha-immunotherapy: On the in vivo stability of astatine-agent bonds, Eur. J. Med. Chem, vol.116, pp.156-164, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01414904

R. E. Vernon, Which Elements Are Metalloids?, J. Chem. Educ, vol.90, pp.1703-1707, 2013.

A. Hermann, R. Hoffmann, and N. W. Ashcroft, Condensed astatine: Monatomic and metallic, Phys. Rev. Lett, vol.111, pp.1-5, 2013.

D. Sergentu, Advances on the Determination of the Astatine Pourbaix Diagram: Predomination of AtO(OH ) 2 ? over At ? in Basic Conditions, Chem. Eur. J, vol.22, pp.2964-2971, 2016.
URL : https://hal.archives-ouvertes.fr/in2p3-01274072

J. Champion, Astatine Standard Redox Potentials and Speciation in Acidic Medium, J. Phys. Chem. A, vol.3, pp.576-582, 2010.
URL : https://hal.archives-ouvertes.fr/in2p3-00450771

A. Tigeras, M. Bachet, H. Catalette, and E. Simoni, PWR iodine speciation and behaviour under normal primary coolant conditions: An analysis of thermodynamic calculations, sensibility evaluations and NPP feedback, Prog. Nucl. Energy, vol.53, pp.504-515, 2011.
URL : https://hal.archives-ouvertes.fr/in2p3-00781849

P. K. Garg, K. L. Alston, and M. R. Zalutsky, Catabolism of Radioiodinated Murine Monoclonal Antibody F(ab') 2 Fragment Labeled Using N-Succinimidyl 3-Iodobenzoate and Iodogen Methods, Bioconjugate Chem, vol.6, pp.493-501, 1995.

J. Champion, Investigation of Astatine(III) Hydrolyzed Species: Experiments and Relativistic Calculations, J. Phys. Chem. A, vol.117, 1983.
URL : https://hal.archives-ouvertes.fr/in2p3-00804191

, Scientific RepoRts |, vol.7

J. Champion, Assessment of an effective quasirelativistic methodology designed to study astatine chemistry in aqueous solution, Phys. Chem. Chem. Phys, vol.13, pp.14984-14992, 2011.
URL : https://hal.archives-ouvertes.fr/in2p3-00617428

N. Guo, The Heaviest Possible Ternary Trihalogen Species, IAtBr ?, Evidenced in Aqueous Solution: An Experimental Performance Driven by Computations, Angew. Chem. Int. Ed, vol.55, pp.15369-15372, 2016.
URL : https://hal.archives-ouvertes.fr/in2p3-01405047

S. Lindegren, H. Jensen, and L. Jacobsson, A radio-high-performance liquid chromatography dual-flow cell gamma-detection system for on-line radiochemical purity and labeling efficiency determination, J. Chromatogr. A, vol.1337, pp.128-132, 2014.

R. A. Milius, Organoastatine Chemistry. Astatination via Electrophilic Destannylation. Appl. Rad. Isot, vol.37, issue.86, pp.90274-90275, 1986.

H. J. Fenton, Oxidation of tartaric acid in presence of iron, J. Chem. Soc., Trans, vol.65, pp.899-910, 1894.

C. Walling, Fenton's reagent revisited, Acc. Chem. Res, vol.8, pp.125-131, 1975.

T. Kurz, A. Terman, B. Gustafsson, and U. T. Brunk, Lysosomes in iron metabolism, ageing and apoptosis, Histochem. Cell Biol, vol.129, pp.389-406, 2008.

Y. Lin, D. L. Epstein, and P. B. Liton, Intralysosomal iron induces lysosomal membrane permeabilization and cathepsin D-mediated cell death in trabecular meshwork cells exposed to oxidative stress, Investig. Ophthalmol. Vis. Sci, vol.51, pp.6483-6495, 2010.

D. Sergentu, G. David, G. Montavon, R. Maurice, and N. Galland, Scrutinizing 'invisible' astatine: a challenge for modern density functionals, J. Comput. Chem, vol.37, pp.1-16, 2016.
URL : https://hal.archives-ouvertes.fr/in2p3-01312975

?. ???????, . ???????, ?. ?. ??-&-??????, . ???????????, . ??????? et al., Dokl Akad Nauk SSSR, vol.263, pp.119-123, 1981.

K. Watanabe, Ionization Potentials of Some Molecules, J. Chem. Phys, vol.26, pp.542-547, 1957.

P. K. Chattaraj, U. Sarkar, D. R. Roy, and . Electrophilicity-index, Chem. Rev, vol.106, pp.2065-2091, 2006.

H. Eyring, The Activated Complex in Chemical Reactions, J. Chem. Phys, vol.3, pp.107-115, 1935.

L. T. Burka, A. Thorsen, and F. P. Guengerich, Enzymatic Monooxygenation of Halogen Atoms: Cytochrome P-450 Catalyzed Oxidation of Iodobenzene by Iodosobenzene, J. Am. Chem. Soc, vol.102, pp.7615-7616, 1980.

L. Turell, R. Radi, and B. Alvarez, The thiol pool in human plasma: The central contribution of albumin to redox processes. Free Radic, Biol. Med, vol.65, pp.244-253, 2013.

Y. M. Go and D. P. Jones, Redox compartmentalization in eukaryotic cells, Biochim. Biophys. Acta, vol.1780, pp.1273-1290, 2008.

N. Kaludercic, S. Deshwal, and F. Di-lisa, Reactive oxygen species and redox compartmentalization, Front. Physiol, vol.5, pp.1-15, 2014.

M. Kemp, Y. Go, and D. Jones, Nonequilibrium thermodynamics of thiol/disulfide redox systems: a perspective on redox systems biology. Free Radic, Biol. Med, vol.44, pp.921-937, 2008.

L. T. Burka, T. Plucinskit, and T. L. Macdonaldt, Mechanisms of hydroxylation by cytochrome P-450: Metabolism of monohalobenzenes by phenobarbital-induced microsomes, Proc. Natl. Acad. Sci, vol.80, pp.6680-6684, 1983.

G. Vaidyanathan and M. R. Zalutsky, Preparation of N-succinimidyl 3-[*I]iodobenzoate: an agent for the indirect radioiodination of proteins, Nat. Protoc, vol.1, pp.707-720, 2006.

O. R. Pozzi and M. R. Zalutsky, Radiopharmaceutical chemistry of targeted radiotherapeutics, Part 3: alpha-particle-induced radiolytic effects on the chemical behavior of 211 At, J. Nucl. Med, vol.48, pp.1190-1196, 2007.

M. K. Armbruster, F. Weigend, C. Van-wüllen, and W. Klopper, Self-consistent treatment of spin-orbit interactions with efficient Hartree-Fock and density functional methods, Phys. Chem. Chem. Phys, vol.10, pp.1748-56, 2008.

K. A. Peterson, B. C. Shepler, D. Figgen, and H. Stoll, On the spectroscopic and thermochemical properties of ClO, BrO, IO, and their anions, J. Phys. Chem. A, vol.110, pp.13877-13883, 2006.

K. A. Peterson, D. Figgen, E. Goll, H. Stoll, and M. Dolg, Systematically convergent basis sets with relativistic pseudopotentials. I. Correlation consistent basis sets for the post-d group 13-15 elements, J. Chem. Phys, vol.119, pp.11099-11112, 2003.

M. Valiev, NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations, Comput. Phys. Commun, vol.181, pp.1477-1489, 2010.

R. Ahlrichs, 6.6, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, TURBOMOLE GmbH, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01450802

P. J. Stephen, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, Ab Initio Calculation of Vibrational Absorption, J. Phys. Chem, vol.98, pp.11623-11627, 1994.

M. K. Armbruster, W. Klopper, and F. Weigend, Basis-set extensions for two-component spin-orbit treatments of heavy elements, Phys. Chem. Chem. Phys, vol.8, pp.4862-4867, 2006.

R. Kendall, T. H. Dunning, and R. J. Harrison, Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions, J. Chem. Phys, vol.96, pp.6796-6806, 1992.

T. H. Dunning, Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen, J. Chem. Phys, vol.90, pp.1007-1023, 1989.

?. ???????, ?. ?. ???????, ?. ?. ??????, . ???????????, . ??????? et al., Dokl Akad Nauk SSSR, vol.263, pp.119-123, 1981.

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb et al., , 2009.

M. , J. Chem. Phys, vol.142, p.94305, 2015.

M. , J. Chem. Phys, vol.142, p.94305, 2015.

M. , J. Chem. Phys, vol.142, p.94305, 2015.

M. , J. Chem. Phys, vol.142, p.94305, 2015.

M. , J. Chem. Phys, vol.142, p.94305, 2015.

M. , J. Chem. Phys, vol.142, p.94305, 2015.

M. , J. Chem. Phys, vol.142, p.94305, 2015.

M. , J. Chem. Phys, vol.142, p.94305, 2015.

, Institut de Développement et de Ressources en Informatique Scientifique du Centre National de la Recherche Scientifique, contract 71859) and from CCRT-CEA

K. G. Dyall and K. Faegri, Introduction to Relativistic Quantum Chemistry, 2007.

B. O. Roos, A. C. Borin, and L. Gagliardi, Angew. Chem., Int. Ed, vol.46, p.1469, 2007.

R. F. Bader, Chem. Rev, vol.91, p.893, 1991.

J. Pilmé, E. Renault, F. Bassal, M. Amaouch, G. Montavon et al., J. Chem. Theory Comput, vol.10, p.4830, 2014.

A. Becke and K. E. Edgecombe, J. Chem. Phys, vol.92, p.5397, 1990.

B. Silvi and A. Savin, Nature, vol.371, p.683, 1994.

M. Kohout and A. Savin, Int. J. Quantum Chem, vol.60, p.875, 1996.

F. Feixas, E. Matito, M. Duran, M. Solà, and B. Silvi, J. Chem. Theory Comput, vol.6, p.2736, 2010.

J. Pilmé, E. Renault, T. Ayed, G. Montavon, and N. Galland, J. Chem. Theory Comput, vol.8, p.2985, 2012.

D. S. Wilbur, Nat. Chem, vol.5, p.246, 2013.

D. S. Wilbur, Curr. Radiopharm, vol.1, p.144, 2008.

S. Rothe, A. N. Andreyev, S. Antalic, A. Borschevsky, L. Capponi et al.,

K. D. Wakabayashi and . Wendt, Nat. Commun, vol.4, p.1835, 2013.

J. Champion, C. Alliot, E. Renault, B. M. Mokili, M. Chérel et al., J. Phys. Chem. A, vol.114, p.576, 2010.

A. Sabatié-gogova, J. Champion, S. Huclier, N. Michel, F. Pottier et al., Anal. Chim. Acta, vol.721, p.182, 2012.

J. Champion, A. Sabatié-gogova, F. Bassal, T. Ayed, C. Alliot et al., J. Phys. Chem. A, vol.117, p.1983, 2013.

A. Hermann, R. Ho?mann, and N. W. Ashcroft, Phys. Rev. Lett, vol.111, p.116404, 2013.

J. Champion, C. Alliot, S. Huclier, D. Deniaud, Z. Asfari et al., Inorg. Chim. Acta, vol.362, p.2654, 2009.

J. Champion, M. Seydou, A. Sabatié-gogova, E. Renault, G. Montavon et al., Phys. Chem. Chem. Phys, vol.13, p.14984, 2011.

C. De-graaf and C. Sousa, Int. J. Quantum Chem, vol.106, p.2470, 2006.

R. Maurice, R. Bastardis, C. De-graaf, N. Suaud, T. Mallah et al., J. Chem. Theory Comput, vol.5, p.2977, 2009.

J. Rota, S. Knecht, T. Fleig, D. Ganyushin, T. Saue et al., J. Chem. Phys, vol.135, p.114106, 2011.

L. F. Chibotaru and L. Ungur, J. Chem. Phys, vol.137, p.64112, 2012.

F. Gendron, D. Páez-hernández, F. Notter, B. Pritchard, H. Bolvin et al., Chem. Eur. J, vol.20, p.7994, 2014.

F. Gendron, B. Pritchard, H. Bolvin, and J. Autschbach, Inorg. Chem, vol.53, p.8577, 2014.

M. Reiher and A. Wolf, Relativistic Quantum Chemistry, 2009.

B. A. Hess, C. M. Marian, and S. D. Peyerimho?, Modern Structure Theory Part I, vol.2, pp.152-278, 1995.

F. Rakowitz and C. M. Marian, Chem. Phys, vol.225, p.223, 1997.

V. Vallet, L. Maron, C. Teichteil, and J. Flament, J. Chem. Phys, vol.113, p.1391, 2000.

F. Réal, V. Vallet, J. Flament, and J. Schamps, J. Chem. Phys, vol.125, p.174709, 2006.

N. Douglas and N. M. Kroll, Ann. Phys, vol.82, p.89, 1974.

B. A. Hess, Phys. Rev. A, vol.33, p.3742, 1986.

G. Jansen and B. A. Hess, Phys. Rev. A, vol.39, p.6016, 1989.

D. A. Pantazis, X. Chen, C. R. Landis, and F. Neese, J. Chem. Theory Comput, vol.4, p.908, 2008.

D. A. Pantazis and F. Neese, Theor. Chem. Acc, vol.131, p.1292, 2012.

R. Ahlrichs and K. May, Phys. Chem. Chem. Phys, vol.2, p.943, 2000.

F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys, vol.7, p.3297, 2005.

F. Neese, ORCA-An Ab Initio, Density Functional and Semiempirical Program Package, version 3.0.1, Max-Planck-Institut für Bioanorganische Chemie, 2013.

B. O. Roos, R. Lindh, P. Malmqvist, V. Veryazov, and P. Widmark, J. Phys. Chem. A, vol.108, p.2851, 2004.

H. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz et al., , 2012.

F. Aquilante, L. De, N. Vico, G. Ferré, P. Ghigo et al., J. Comput. Chem, vol.31, p.224, 2010.

B. O. Roos, P. R. Taylor, and P. E. Siegbahn, Chem. Phys, vol.48, p.157, 1980.

B. O. Roos, Theory and Applications of Computational Chemistry: The First Forty Years, pp.725-764, 2005.

A. S. Gomes, F. Réal, N. Galland, C. Angeli, R. Cimiraglia et al., Phys. Chem. Chem. Phys, vol.16, p.9238, 2014.

B. A. Hess, C. M. Marian, U. Wahlgren, and O. Gropen, Chem. Phys. Lett, vol.251, p.365, 1996.

F. Neese, J. Chem. Phys, vol.122, p.34107, 2005.

C. Teichteil, M. Pélissier, and F. Spiegelmann, Chem. Phys, vol.81, p.273, 1983.

R. Llusar, M. Casarrubios, Z. Barandiarán, and L. Seijo, J. Chem. Phys, vol.105, p.5321, 1996.

C. Angeli, R. Cimiraglia, S. Evangelisti, T. Leininger, and J. Malrieu, J. Chem. Phys, vol.114, p.10252, 2001.

K. G. Dyall, J. Chem. Phys, vol.102, p.4909, 1995.

, AMFI, an atomic mean-field integral program, 1996.

C. Angeli, S. Borini, M. Cestari, and R. Cimiraglia, J. Chem. Phys, vol.121, p.4043, 2004.

R. Bast, H. J. Aa, T. Jensen, L. Saue, . Visscher et al.,

, Tables of Spectra of Hydrogen, Carbon, Nitrogen, and Oxygen Atoms and Ions, 1993.

E. Luc-koenig, C. Morillon, and J. Vergès, Phys. Scr, vol.12, p.199, 1975.

T. Fleig and A. J. Sadlej, Phys. Rev. A, vol.65, p.32506, 2002.

I. Kim and Y. S. Lee, J. Chem. Phys, vol.139, p.134115, 2013.

W. C. Martin and C. H. Corliss, J. Res. Natl. Bur. Stand., Sect. A, vol.64, p.443, 1960.

C. Morillon and J. Vergès, Phys. Scr, vol.12, p.145, 1975.

C. Morillon and J. Vergès, Phys. Scr, vol.12, p.129, 1975.

G. W. Charles, J. Opt. Soc. Am, vol.56, p.1292, 1966.

C. Teichteil and M. Pelissier, Chem. Phys, vol.180, p.1, 1994.

L. Visscher and K. G. Dyall, J. Chem. Phys, vol.104, p.9040, 1996.

O. Fossgaard, O. Gropen, M. C. Valero, and T. Saue, J. Chem. Phys, vol.118, p.10418, 2003.

T. Nakajima and K. Hirao, J. Chem. Phys, vol.119, p.4105, 2003.

A. V. Mitin and C. Van-wüllen, J. Chem. Phys, vol.124, p.64305, 2006.

S. Höfener, R. Ahlrichs, S. Knecht, and L. Visscher, ChemPhysChem, vol.13, p.3952, 2012.

K. P. Huber and G. Herzberg, Constants of Diatomic Molecules, 1979.

, for spectroscopic constants and e?ective bond orders computed with the SARC-DKH-TZVP basis sets

T. Ayed, M. Seydou, F. Réal, G. Montavon, and N. Galland, J. Phys. Chem. B, vol.117, p.5206, 2013.

T. Ayed, F. Réal, G. Montavon, and N. Galland, J. Phys. Chem. B, vol.117, p.10589, 2013.

L. Visscher and K. G. Dyall, J. Chem. Phys, vol.104, p.9040, 1996.

A. S. Gomes, F. Réal, N. Galland, C. Angeli, R. Cimiraglia et al.,

, Chem. Phys, vol.16, p.9238, 2014.

. S-4,