R. Morrison, Proc. R. Soc. Med. Electron beam therapy, vol.58, p.160, 1965.

D. E. Milenic, E. D. Brady, and M. W. Brechbiel, Nat. Rev. Drug. Discov. Antibody-targeted radiation cancer therapy, vol.3, p.488, 2004.

J. L. Humm, Dosimetric aspects of radiolabeled antibodies for tumor therapy, J. Nucl. Med, p.1490, 1986.

S. Liu, Bifunctional coupling agents for radiolabeling of biomolecules and targetspecific delivery of metallic radionuclides, Adv. Drug. Deliv. Rev, p.1347, 2008.

E. Hallaba, H. El-asrag, and Y. Abou-zeid, 131 I-labelling of tyrosine by iodine monochloride, Int. J. Appl. Radiat. Isot, vol.21, p.107, 1970.

R. M. Mcdevitt, G. Sgouros, D. R. Finn, L. J. Humm, G. J. Jurcic et al., Eur. J. Nucl. Med. Radioimmunotherapy with alpha-emitting nuclides, p.1341, 1998.

D. S. Wilbur, Nat. Chem. Enigmatic astatine, issue.5, p.246, 2013.

D. S. Wilbur and C. Radiopharm, At] astatine-labeled compound stability: issues with released [ 211 At] astatide and development of labeling reagents to increase stability, 2008.

M. R. Zalutsky, M. Pruszynski, and C. Radiopharm, Astatine-211: production and availability, 2011.

G. Vaidyanathan and M. R. Zalutsky, Astatine radiopharmaceuticals: prospects and problems, 2008.

M. R. Zalutsky, G. Vaidyanathan, C. Radiopharm, and . Des, Astatine-211-labeled radiotherapeutics an emerging approach to targeted alpha-particle radiotherapy, vol.6, p.1433, 2000.

G. Vaidyanathan and M. R. Zalutsky, Phys. Med. Biol. Targeted therapy using alpha emitters, p.41, 1915.

R. H. Larsen, B. W. Wieland, and M. R. Zalutsky, Evaluation of an internal cyclotron target for the production of 211 At via the 209 Bi (?, 2n) 211 At reaction, Appl. Radiat. Isot, p.135, 1996.

O. Lebeda, R. Jiran, J. Ráli?, and J. ?tursa, A new internal target system for production of 211 At on the cyclotron U-120M, vol.63, p.49, 2005.

T. G. Turkington, M. R. Zalutsky, R. J. Jaszczak, P. K. Garg, G. Vaidyanathan et al., Phys. Med

, Measuring astatine-211 distributions with SPECT, Biol, vol.38, p.1121, 1993.

E. L. Johnson, T. G. Turkington, R. J. Jaszczak, D. R. Gilland, G. Vaidyanathan et al., Quantitation of 211 At in small volumes for evaluation of targeted radiotherapy in animal models, Nucl. Med. Biol, p.45, 1995.

A. T. Yordanov, O. Pozzi, S. Carlin, G. Akabani, B. Wieland et al., Wet harvesting of no-carrier-added 211 At from an irradiated 209 Bi target for radiopharmaceutical applications, J. Radioanal. Nucl. Chem, vol.262, p.593, 2004.

J. Champion, C. Alliot, S. Huclier, D. Deniaud, Z. Asfari et al., Determination of stability constants between complexing agents and At(I) and At(III) species present at ultra-trace concentrations, Inorg. Chim. Acta, p.2654, 2009.
URL : https://hal.archives-ouvertes.fr/in2p3-00382733

J. Champion, C. Alliot, E. Renault, B. M. Mokili, M. Chérel et al., Astatine standard redox potentials and speciation in acidic medium, J. Phys. Chem. A, p.576, 2010.
URL : https://hal.archives-ouvertes.fr/in2p3-00450771

S. Lindegren, T. Bäck, and H. J. Jensen, Dry-distillation of astatine-211 from irradiated bismuth targets: a time-saving procedure with high recovery yields, Appl. Radiat. Isot, vol.55, p.157, 2001.

L. Junqin, Z. Zilong, A. Martin, Z. Xuemei, and C. Chongyang, Theoretical study for the electron affinities of negative ions with the MCDHF method, J. Phys. Chem. B, vol.45, p.165004, 2012.

K. A. Peterson, D. Figgen, E. Goll, H. Stoll, and M. Dolg, Systematically convergent basis sets with relativistic pseudopotentials. II. Small-core pseudopotentials and correlation consistent basis sets for the post-d group 16-18 elements, J. Chem. Phys, vol.119, p.11113, 2003.

B. O. Roos, R. Lindh, P. Malmqvist, V. Veryazov, and P. Widmark, Main group atoms and dimers studied with a new relativistic ANO basis set, J. Phys. Chem. A, vol.108, p.2851, 2004.

R. E. Vernon, Which elements are metalloids?, J. Chem. Educ, p.1703, 2013.

J. Pilmé, E. Renault, F. Bassal, M. Amaouch, G. Montavon et al., QTAIM analysis in the context of quasirelativistic quantum calculations, J. Chem. Theory Comput, vol.10, p.4830, 2014.

A. S. Gomes and L. Visscher, Chem. Phys. Lett. The influence of core correlation on the spectroscopic constants of HAt, vol.399, p.1, 2004.

T. Saue, K. Faegri, and O. Gropen, Relativistic effects on the bonding of heavy and superheavy hydrogen halides, Chem.Phys. Lett, vol.263, p.360, 1996.

L. Visscher and K. G. Dyall, Relativistic and correlation effects on molecular properties. I. The dihalogens F 2 , Cl 2 , Br 2 , I 2 , and At 2, J. Chem. Phys, vol.104, p.9040, 1996.

J. Pilmé, E. Renault, T. Ayed, G. Montavon, and N. Galland, Introducing the ELF topological analysis in the field of quasirelativistic quantum calculations, J. Chem. Theory Comput, vol.8, p.2985, 2012.

T. Helgaker, P. Jørgensen, and J. Olsen, Molecular electronic-structure theory, 2014.

T. Saue, PhD dissertation: Principles and applications of relativistic molecular calculations, 1995.

W. Koch and M. C. Holthausen, A chemist's guide to density functional theory, 2015.

K. G. Dyall and J. K. Faegri, Introduction to relativistic quantum chemistry, 2007.

C. C. Roothaan, Rev. Mod. Phys. New developments in molecular orbital theory, vol.23, p.69, 1951.

G. G. Hall, P. Roy, . Soc, and . Lond, The molecular orbital theory of chemical valency. VIII. A method of calculationg ionization potentials, p.441, 1951.

C. Møller and M. S. Plesset, Note on an approximation treatment for many-electron systems, Phys. Rev, vol.46, p.618, 1934.

J. Paldus, Theory and applications of computational chemistry, 2005.

D. Sherrill and H. F. Schaefer, The configuration interaction method: Advances in highly correlated approaches, Adv. Quantum Chem, vol.34, p.143, 1999.

S. R. Langhoff and E. R. Davidson, Int. J. Quantum Chem. Configuration interaction calculations on the nitrogen molecule, vol.8, p.61, 1974.

E. R. Davidson, K. B. Lipkowitz, and D. B. Boyd, Perspectives on ab initio calculations. VCH, 1990.

B. O. Roos, P. T. Taylor, and P. E. Siegbahn, A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach, Chem. Phys, p.157, 1980.

C. Dykstra, G. Frenking, K. Kim, and G. Scuseria, Theory and Applications of Computational Chemistry: the first forty years, 2011.

K. Andersson, P. Malmqvist, and B. O. Roos, Second-order perturbation theory with a complete active space self-consistent field reference function, J. Chem. Phys, p.1218, 1992.

C. Angeli, R. Cimiraglia, S. Evangelisti, T. Leininger, and J. P. Malrieu, Introduction of n-electron valence states for multireference perturbation theory, J. Chem. Phys, vol.114, p.10252, 2001.

J. Pascual-ahuir, E. Silla, and I. Tunon, GEPOL: An improved description of molecular surfaces. III. A new algorithm for the computation of a solvent-excluding surface, J. Comput. Chem, p.1127, 1994.

V. Barone, M. Cossi, and J. Tomasi, A new definition of cavities for the computation of solvation free energies by the polarizable continuum model, J. Chem. Phys, vol.107, p.3210, 1997.

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb et al.,

B. Barone, G. A. Mennucci, H. Petersson, M. Nakatsuji, X. Caricato et al.,

G. Bloino, J. L. Zheng, M. Sonnenberg, M. Hada, K. Ehara et al.,

Y. Nakajima, O. Honda, H. Kitao, T. Nakai, J. A. Vreven et al.,

J. C. Rendell, S. S. Burant, J. Iyengar, M. Tomasi, N. Cossi et al.,

V. Cross, C. Bakken, J. Adamo, R. Jaramillo, R. E. Gomperts et al.,

S. Dannenberg, A. D. Dapprich, Ö. Daniels, J. B. Farkas, J. V. Foresman et al., Gaussian

G. Inc, , 2009.

C. J. Cramer, Essentials of computational chemistry: theories and models, 2004.

J. Champion, M. Seydou, A. Sabatié-gogova, E. Renault, G. Montavon et al., Assessment of an effective quasirelativistic methodology designed to study astatine chemistry in aqueous solution, Phys. Chem. Chem. Phys, p.13, 2011.
URL : https://hal.archives-ouvertes.fr/in2p3-00617428

J. Champion, A. Sabatié-gogova, F. Bassal, T. Ayed, C. Alliot et al., Investigation of astatine (III) hydrolyzed species: Experiments and relativistic calculations, J. Comput. Chem. Scrutinizing "invisible" astatine: A challenge for modern density functionals, issue.117, p.1345, 1983.
URL : https://hal.archives-ouvertes.fr/in2p3-00804191

O. Fossgaard, O. Gropen, M. C. Valero, T. Saue, ;. et al., On the performance of four-component relativistic density functional theory: Spectroscopic constants and dipole moments of the diatomics HX and XY, J. Chem. Phys, vol.118, 2003.

T. Saue and T. Helgaker, J. Comput. Chem. Four-component relativistic Kohn-Sham theory, vol.23, p.814, 2002.

M. K. Armbruster, F. Weigend, C. Van-wüllen, and W. Klopper, Self-consistent treatment of spin-orbit interactions with efficient Hartree-Fock and density functional methods, Phys. Chem. Chem. Phys, vol.10, p.1748, 2008.

M. Valiev, E. J. Bylaska, N. Govind, K. Kowalski, T. P. Straatsma et al., NWChem: a comprehensive and scalable open-source solution for large scale molecular simulations, Comput. Phys. Commun, p.1477, 2010.

J. Champion, M. Seydou, A. Sabatié-gogova, E. Renault, G. Montavon et al., Assessment of an effective quasirelativistic methodology designed to study astatine chemistry in aqueous solution, Phys. Chem. Chem. Phys, p.13, 2011.
URL : https://hal.archives-ouvertes.fr/in2p3-00617428

T. Ayed, M. Seydou, F. Réal, G. Montavon, and N. Galland, How does the solvation unveil AtO + reactivity?, J. Phys. Chem. B, vol.117, p.5206, 2013.
URL : https://hal.archives-ouvertes.fr/in2p3-00840063

T. Ayed, F. Réal, G. Montavon, and N. Galland, Rationalization of the solvation effects on the AtO + ground-state change, J. Phys. Chem. B, vol.117, p.10589, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01231233

A. S. Gomes, F. Réal, N. Galland, C. Angeli, R. Cimiraglia et al., Phys. Chem. Chem. Phys. Electronic structure investigation of the evanescent AtO + ion, vol.16, p.9238, 2014.

Y. J. Choi, C. Bae, Y. S. Lee, and S. Lee, Spin-orbit density functional theory calculations for TlAt with relativistic effective core potentials, vol.24, p.728, 2003.

Y. J. Choi and Y. S. Lee, Spin-orbit density functional theory calculations for heavy metal monohydrides, J. Chem. Phys, vol.119, 2003.

A. V. Mitin and C. Van-wüllen, Two-component relativistic density-functional calculations of the dimers of the halogens from bromine through element 117 using effective core potential and all-electron methods, J. Chem. Phys, vol.124, p.64305, 2006.

E. Apra, E. J. Bylaska, W. A. Jong, N. Govind, K. Kowalski et al.,

M. T. Hirata, J. Hackler, P. Mullin, R. Nichols, J. Peverati et al.,

D. Dupuis, D. M. Silverstein, J. Smith, V. Nieplocha, M. Tipparaju et al.,

J. Wolinski, D. Anchell, P. Bernholdt, T. Borowski, D. Clark et al.,

E. Elwood, M. Glendening, A. Gutowski, J. Hess, B. Jaffe et al.,

X. Littlefield, B. Long, T. Meng, S. Nakajima, L. Niu et al., NWChem version 6.3: A comprehensive and scalable open-source solution for large scale molecular simulations, 2013.

R. Ahlrichs, M. K. Armbruster, R. A. Bachorz, M. Bär, H. Baron et al.,

N. Böcker, P. Crawford, F. D. Deglmann, M. Sala, M. Diedenhofen et al.,

W. Kattannek, A. Klopper, C. Köhn, M. Kölmel, K. Kollwitz et al.,

H. Pabst, D. Patzelt, O. Rappoport, A. Rubner, U. Schäfer et al., TURBOMOLE version 6, vol.6, 2014.

C. Van-wüllen, Spin densities in two-component relativistic density functional calculations: Noncollinear versus collinear approach, J. Comput. Chem, vol.23, p.779, 2002.

S. H. Vosko, L. Wilk, M. Nusair, .. J. Can, and . Phys, Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis, vol.58, p.1200, 1980.

C. Lee, W. Yang, and R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B, vol.37, p.785, 1988.

A. D. Becke, Phys. Rev. A. Density-functional exchange-energy approximation with correct asymptotic behavior, vol.38, p.3098, 1988.

J. P. Perdew, Density-functional approximation for the correlation energy of the inhomogeneous electron gas, Phys. Rev. B, p.8822, 1986.

J. P. Perdew, K. Burke, and Y. Wang, Generalized gradient approximation for the exchangecorrelation hole of a many-electron system, Phys. Rev. B, vol.54, p.16533, 1996.

K. Burke, J. P. Perdew, and Y. Wang, Electronic density functional theory: Recent progress and new directions

U. S. Springer and M. A. Boston, , 1998.

J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett, p.3865, 1996.

Y. Zhang and W. Yang, Generalized gradient approximation made simple, Phys. Rev. Lett. Comment on, vol.80, p.890, 1998.

F. A. Hamprecht, A. J. Cohen, D. J. Tozer, and N. C. Handy, J. Chem. Phys. Development and assessment of new exchange-correlation functionals, vol.109, p.6264, 1998.

N. C. Handy and A. J. Cohen, Mol. Phys. Left-right correlation energy, p.403, 2001.

J. P. Perdew, S. Kurth, A. Zupan, and P. Blaha, Accurate density functional with correct formal properties: A step beyond the generalized gradient approximation, Phys. Rev. Lett, vol.82, p.2544, 1999.

J. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria, Climbing the density functional ladder: Nonempirical meta-generalized gradient approximation designed for molecules and solids, Phys. Rev. Lett, vol.91, p.146401, 2003.

T. Van-voorhis and G. E. Scuseria, A novel form for the exchange-correlation energy functional, J. Chem. Phys, vol.109, p.400, 1998.

Y. Zhao and D. G. Truhlar, A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions, J. Chem. Phys, vol.125, 2006.

J. Heyd, G. E. Scuseria, M. Ernzerhof, J. Chem, . Phys et al., Hybrid functionals based on a screened Coulomb potential, J. Chem. Phys, vol.118, p.219906, 2003.

R. Baer and D. Neuhauser, Density functional theory with correct long-range asymptotic behavior, Phys. Rev. Lett, p.43002, 2005.

E. Livshits and R. Baer, A well-tempered density functional theory of electrons in molecules, Phys. Chem. Chem. Phys, vol.9, p.2932, 2007.

R. Peverati and D. G. Truhlar, Improving the accuracy of hybrid meta-GGA density functionals by range separation, J. Phys. Chem. Lett, 2011.

K. A. Peterson, D. Figgen, E. Goll, H. Stoll, and M. Dolg, Systematically convergent basis sets with relativistic pseudopotentials. II. Small-core pseudopotentials and correlation consistent basis sets for the post-d group 16-18 elements, J. Chem. Phys, vol.119, p.11113, 2003.

K. A. Peterson, B. C. Shepler, D. Figgen, and H. Stoll, On the spectroscopic and thermochemical properties of ClO, J. Phys. Chem. A, vol.110, p.13877, 2006.

M. K. Armbruster, W. Klopper, and F. Weigend, Basis-set extensions for twocomponent spin-orbit treatments of heavy elements, Phys. Chem. Chem. Phys, vol.8, p.4862, 2006.

T. H. Dunning, Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen, J. Chem. Phys, p.1007, 1989.

R. A. Kendall, T. H. Dunning, and R. J. Harrison, Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions, J. Chem. Phys, p.6796, 1992.

D. E. Woon and T. H. Dunning, Gaussian basis sets for use in correlated molecular calculations, J. Chem. Phys

, The atoms aluminum through argon, 1358.

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb et al.,

B. Barone, G. A. Mennucci, H. Petersson, M. Nakatsuji, X. Caricato et al.,

G. Bloino, J. L. Zheng, M. Sonnenberg, M. Hada, K. Ehara et al.,

Y. Nakajima, O. Honda, H. Kitao, T. Nakai, J. A. Vreven et al.,

J. C. Rendell, S. S. Burant, J. Iyengar, M. Tomasi, N. Cossi et al.,

V. Cross, C. Bakken, J. Adamo, R. Jaramillo, R. E. Gomperts et al.,

S. Dannenberg, A. D. Dapprich, Ö. Daniels, J. B. Farkas, J. V. Foresman et al., Gaussian 09, revision A02, 2009.

J. Champion, C. Alliot, E. Renault, B. M. Mokili, M. Chérel et al., Astatine standard redox potentials and speciation in acidic medium, J. Phys. Chem. A, p.576, 2010.
URL : https://hal.archives-ouvertes.fr/in2p3-00450771

V. Barone, M. Cossi, and J. Tomasi, A new definition of cavities for the computation of solvation free energies by the polarizable continuum model, J. Chem. Phys, vol.107, p.3210, 1997.

C. J. Cramer, Essentials of computational chemistry: theories and models, 2004.

S. Höfener, R. Ahlrichs, S. Knecht, L. Visscher, and C. , Relativistic and non-relativistic electronic molecular-structure calculations for dimers of 4p-, 5p-, and 6p-block elements, vol.13, p.3952, 2012.

D. Yang and F. Wang, Structures and stabilities of group 17 fluorides EF 3 (E= I, At, and element 117) with spin-orbit coupling, Phys. Chem. Chem. Phys, vol.14, p.15816, 2012.

A. S. Gomes and L. Visscher, Chem. Phys. Lett. The influence of core correlation on the spectroscopic constants of HAt, vol.399, p.1, 2004.

S. Rothe, A. N. Andreyev, S. Antalic, A. Borschevsky, L. Capponi et al.,

V. N. Fedorov, D. A. Fedosseev, S. Fink, L. Fritzsche, M. Ghys et al.,

L. Pershina, T. J. Popescu, D. Procter, S. Radulov, M. M. Raeder et al.,

M. D. Sandhu, A. M. Seliverstov, P. Sjödin, . Van-den, P. Bergh et al.,

D. A. Wendt, Measurement of the first ionization potential of astatine by laser ionization spectroscopy, Nat. Commun, 1835.

A. Borschevsky, L. F. Pa?teka, V. Pershina, E. Eliav, and U. Kaldor, Ionization potentials and electron affinities of the superheavy elements 115-117 and their sixth-row homologues Bi, Phys. Rev. A, p.20501, 2015.

D. R. Lide, Handbook of chemistry and physics, 1998.

J. Champion, A. Sabatié-gogova, F. Bassal, T. Ayed, C. Alliot et al., Investigation of astatine (III) hydrolyzed species: Experiments and relativistic calculations, J. Phys. Chem. A, p.117, 1983.
URL : https://hal.archives-ouvertes.fr/in2p3-00804191

S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, J. Chem. Phys, p.154104, 2010.

P. Geerlings, F. De-proft, and W. Langenaeker, Chem. Rev. Conceptual density functional theory, vol.103, p.1793, 2003.

J. Furtado, F. De-proft, and P. Geerlings, The noble gases: How their electronegativity and hardness determines their chemistry, J. Phys. Chem. A, vol.119, p.1339, 2015.

D. R. Herrick, ;. Sergentu, M. Amaouch, J. Pilmé, N. Galland et al., Connecting Pauling and Mulliken electronegativities, J. Chem. Phys. Electronic structures and geometries of the XF, vol.1, p.114306, 2005.

E. H. Appelman, E. N. Sloth, and M. H. Studier, Observation of astatine compounds by time-of-flight mass spectrometry, Inorg. Chem, issue.5, p.766, 1966.

D. W. Magnuson, Microwave spectrum and molecular structure of bromine trifluoride, J. Chem. Phys, p.223, 1957.

D. F. Smith, The microwave spectrum and structure of chlorine trifluoride, J. Chem. Phys, 1953.

H. S. Müller, The rotational spectrum of chlorine trifluoride, ClF 3 . Centrifugal distortion analysis, Cl nuclear magnetic shielding tensor, structure, and the harmonic force field, Phys. Chem. Chem. Phys, 1570.

H. Selig, H. H. Claassen, and J. H. Holloway, J. Chem. Phys. Infrared and raman spectra of ClF, vol.3, issue.3, p.3517, 1970.

H. H. Claassen, B. Weinstock, and J. G. Malm, J. Chem. Phys. Vibrational spectra and thermodynamic properties of ClF, vol.3, issue.3, p.285, 1958.

M. Schmeisser, D. Naumann, E. Lehmann, and J. F. Chem, Vibrational spectrum of iodine trifluoride, vol.3, p.441, 1974.

S. Hoyer and K. Seppelt, Angew. Chem. Int. Ed. The structure of IF, vol.3, 1448.

R. J. Gillespie, The valence-shell electron-pair repulsion (VSEPR) theory of directed valency, J. Chem. Educ, p.295, 1963.

R. J. Gillespie, J. Chem, and . Educ, The electron-pair repulsion model for molecular geometry, Quart. Rev. Chem. Soc. Inorganic stereochemistry, vol.47, p.339, 1957.

R. J. Gillespie and E. A. Robinson, Electron domains and the VSEPR model of molecular geometry, Angew. Chem. Int. Ed, p.495, 1996.

M. Kaupp and A. Chem, Non-VSEPR" structures and bonding in d 0 systems, p.3534, 2001.

D. Yang and F. Wang, Structures and stabilities of group 17 fluorides EF 3 (E= I, At, and element 117) with spin-orbit coupling, Phys. Chem. Chem. Phys, vol.14, p.15816, 2012.

P. Schwerdtfeger, J. Phys, and . Chem, Second-order Jahn-Teller distortions in group 17 fluorides EF 3 (E= Cl, Br, I, and At). Large relativistic bond angle changes in AtF 3, vol.100, p.2968, 1996.

I. B. Bersuker, Pseudo-Jahn-Teller effect -A two-state paradigm in formation, deformation, and transformation of molecular systems and solids, Chem. Rev, issue.113, p.1351, 2013.

H. Kim, Y. J. Choi, and Y. S. Lee, J. Phys. Chem. B. Spin-Orbit and electron correlation effects on the structure of EF, vol.3, issue.117, p.16021, 2008.

C. Bae, Y. Han, and Y. S. Lee, Spin-orbit and relativistic effects on structures and stabilities of group 17 fluorides EF 3 (E= I, At, and element 117): Relativity induced stability for the D 3h Structure of, J. Phys. Chem. A, vol.3, issue.117, p.852, 2003.

T. Fleig and A. J. Sadlej, Electric dipole polarizabilities of the halogen atoms in 2 P 1/2 and 2 P 3/2 states: Scalar relativistic and two-component configuration-interaction calculations, Phys. Rev. A, p.32506, 2002.

J. Champion, M. Seydou, A. Sabatié-gogova, E. Renault, G. Montavon et al., Assessment of an effective quasirelativistic methodology designed to study astatine chemistry in aqueous solution, Phys. Chem. Chem. Phys, p.13, 2011.
URL : https://hal.archives-ouvertes.fr/in2p3-00617428

J. Pilmé, E. Renault, T. Ayed, G. Montavon, and N. Galland, Introducing the ELF topological analysis in the field of quasirelativistic quantum calculations, J. Chem. Theory Comput, vol.8, p.2985, 2012.

A. Hermann, R. Hoffmann, and N. W. Ashcroft, Condensed astatine: monatomic and metallic, Phys. Rev. Lett, issue.111, p.116404, 2013.

T. Ayed, M. Seydou, F. Réal, G. Montavon, and N. Galland, How does the solvation unveil AtO + reactivity?, J. Phys. Chem. B, vol.117, p.5206, 2013.
URL : https://hal.archives-ouvertes.fr/in2p3-00840063

J. Pilmé, E. Renault, F. Bassal, M. Amaouch, G. Montavon et al., QTAIM analysis in the context of quasirelativistic quantum calculations, J. Chem. Theory Comput, vol.10, p.4830, 2014.

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb et al.,

B. Barone, G. A. Mennucci, H. Petersson, M. Nakatsuji, X. Caricato et al.,

G. Bloino, J. L. Zheng, M. Sonnenberg, M. Hada, K. Ehara et al.,

Y. Nakajima, O. Honda, H. Kitao, T. Nakai, J. A. Vreven et al.,

J. J. Bearpark, E. Heyd, K. N. Brothers, V. N. Kudin, R. Staroverov et al.,

S. Dannenberg, A. D. Dapprich, Ö. Daniels, J. B. Farkas, J. V. Foresman et al., Gaussian 09, Revision A.02, 2009.

E. J. Bylaska, W. A. Jong, N. Govind, K. Kowalski, T. P. Straatsma et al.,

J. Windus, P. Hammond, S. Nichols, M. T. Hirata, Y. Hackler et al.,

M. A. Smith, J. Nieplocha, V. Tipparaju, M. Krishnan, A. Vazquez-mayagoitia et al.,

M. Auer, L. D. Nooijen, E. Crosby, G. Brown, G. I. Cisneros et al.,

M. Dachsel, K. Deegan, D. Dyall, E. Elwood, M. Glendening et al., NWChem version 5.1.1: A Computational Chemistry Package for Parallel Computers, 2009.

K. A. Peterson, D. Figgen, E. Goll, H. Stoll, and M. Dolg, Systematically convergent basis sets with relativistic pseudopotentials. II. Small-core pseudopotentials and correlation consistent basis sets for the post-d group 16-18 elements, J. Chem. Phys, vol.119, p.11113, 2003.

M. K. Armbruster, W. Klopper, and F. Weigend, Basis-set extensions for twocomponent spin-orbit treatments of heavy elements, Phys. Chem. Chem. Phys, vol.8, p.4862, 2006.

R. A. Kendall, T. H. Dunning, and R. J. Harrison, Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions, J. Chem. Phys, p.6796, 1992.

P. Valtazanos and K. Ruedenberg, Theor. Chim. Acta. Bifurcations and transition states, p.281, 1986.

R. Poli and J. N. Harvey, Spin forbidden chemical reactions of transition metal compounds, New ideas and new computational challenges, vol.32, p.1, 2003.

J. N. Harvey, Understanding the kinetics of spin-forbidden chemical reactions, Phys. Chem. Chem. Phys, vol.9, p.331, 2007.

A. S. Gomes, F. Réal, N. Galland, C. Angeli, R. Cimiraglia et al., Phys. Chem. Chem. Phys. Electronic structure investigation of the evanescent AtO + ion, vol.16, p.9238, 2014.

R. Maurice, F. Réal, A. S. Gomes, V. Vallet, G. Montavon et al., Effective bond orders from two-step spin-orbit coupling approaches: The I 2 , At 2 , IO + , and AtO + case studies, J. Chem. Phys, p.94305, 2015.
URL : https://hal.archives-ouvertes.fr/in2p3-01123856

J. Champion, M. Seydou, A. Sabatié-gogova, E. Renault, G. Montavon et al., Assessment of an effective quasirelativistic methodology designed to study astatine chemistry in aqueous solution, Phys. Chem. Chem. Phys, p.13, 2011.
URL : https://hal.archives-ouvertes.fr/in2p3-00617428

J. Champion, A. Sabatié-gogova, F. Bassal, T. Ayed, C. Alliot et al., Investigation of astatine (III) hydrolyzed species: Experiments and relativistic calculations, J. Phys. Chem. A, p.117, 1983.
URL : https://hal.archives-ouvertes.fr/in2p3-00804191

J. Li, B. E. Bursten, L. Andrews, and C. J. Marsden, On the electronic structure of molecular UO 2 in the presence of Ar atoms: Evidence for direct U-Ar bonding, J. Am. Chem. Soc, p.3424, 2004.

J. Li, B. E. Bursten, B. Liang, L. Andrews, and S. , Noble gas-actinide compounds: Complexation of the CUO molecule by Ar, Kr, and Xe atoms in noble gas matrices, 2002.

L. Andrews, B. Liang, J. Li, and B. E. Bursten, Ground-state reversal by matrix interaction: electronic states and vibrational frequencies of CUO in solid argon and neon, Angew. Chem. Int. Ed. Engl, p.4565, 2000.

M. Zhou, L. Andrews, J. Li, and B. E. Bursten, Reaction of laser-ablated uranium atoms with CO: Infrared spectra of the CUO, CUO -, OUCCO,(? 2 -C 2 ) UO 2 , and U (CO) x (x= 1-6) molecules in solid neon, J. Am. Chem. Soc, p.9712, 1999.

I. Infante, L. Andrews, X. Wang, L. Gagliardi, and C. J. Eur, Noble gas matrices may change the electronic structure of trapped molecules: the UO 2 (Ng) 4 [Ng= Ne, Ar] case, p.12804, 2010.

T. Ayed, M. Seydou, F. Réal, G. Montavon, and N. Galland, How does the solvation unveil AtO + reactivity?, J. Phys. Chem. B, vol.117, p.5206, 2013.
URL : https://hal.archives-ouvertes.fr/in2p3-00840063

T. Ayed, F. Réal, G. Montavon, and N. Galland, Rationalization of the solvation effects on the AtO + ground-state change, J. Phys. Chem. B, vol.117, p.10589, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01231233

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb et al.,

B. Barone, G. A. Mennucci, H. Petersson, M. Nakatsuji, X. Caricato et al.,

G. Bloino, J. L. Zheng, M. Sonnenberg, M. Hada, K. Ehara et al.,

Y. Nakajima, O. Honda, H. Kitao, T. Nakai, J. A. Vreven et al.,

J. J. Bearpark, E. Heyd, K. N. Brothers, V. N. Kudin, R. Staroverov et al.,

S. Dannenberg, A. D. Dapprich, Ö. Daniels, J. B. Farkas, J. V. Foresman et al., Gaussian 09, revision D01, 2013.

R. Ahlrichs, M. K. Armbruster, R. A. Bachorz, M. Bär, H. Baron et al.,

N. Böcker, P. Crawford, F. D. Deglmann, M. Sala, M. Diedenhofen et al.,

F. Friese, A. Furche, F. Glöß, M. Haase, C. Häser et al.,

M. Huniar, W. Kattannek, A. Klopper, C. Köhn, M. Kölmel et al.,

M. Öhm, H. Pabst, D. Patzelt, O. Rappoport, A. Rubner et al.,

B. Treutler, M. Unterreiner, F. Arnim, P. Weigend, H. Weis et al., TURBOMOLE version 6, vol.6, 2014.

K. A. Peterson, D. Figgen, E. Goll, H. Stoll, and M. Dolg, Systematically convergent basis sets with relativistic pseudopotentials. II. Small-core pseudopotentials and correlation consistent basis sets for the post-d group 16-18 elements, J. Chem. Phys, vol.119, p.11113, 2003.

R. A. Kendall, T. H. Dunning, and R. J. Harrison, Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions, J. Chem. Phys, p.6796, 1992.

T. H. Dunning, Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen, J. Chem. Phys, p.1007, 1989.

H. J. Werner, P. J. Knowles, R. Lindh, F. R. Manby, M. Schütz et al.,

J. May, S. J. Mcnicholas, W. Meyer, M. E. Mura, A. Nicklass et al.,

H. Schumann, A. J. Stoll, R. Stone, T. Tarroni, M. Thorsteinsson et al., , 2009.

B. O. Roos, A. C. Borin, and L. Gagliardi, Reaching the maximum multiplicity of the covalent chemical bond, Angew.Chem. Int. Ed, vol.119, p.1491, 2007.

F. Gendron, B. L. Guennic, and J. Autschbach, Magnetic properties and electronic structures of Ar 3 U IV -L complexes with Ar = C 5 (CH 3 ) 4 H -or C 5 H 5 -and L = CH 3 , NO, and Cl, Inorg. Chem, p.13174, 2014.

D. Sergentu, D. Teze, A. Sabatié-gogova, C. Alliot, N. Guo et al., Advances on the determination of the astatine Pourbaix diagram: Predomination of AtO(OH) 2 ? over At ? in basic conditions, Chem. Eur. J, p.2964, 2016.
URL : https://hal.archives-ouvertes.fr/in2p3-01274072

B. Beverskog and I. Puigdomenech, Revised Pourbaix diagrams for nickel at 25-300 °C, Corros. Sci, vol.39, p.969, 1997.

B. Beverskog and I. Puigdomenech, Revised pourbaix diagrams for iron at 25-300 °C, Corros. Sci, vol.38, p.2121, 1996.

B. Beverskog and I. Puigdomenech, Revised pourbaix diagrams for chromium at 25-300 °C, Corros. Sci, vol.39, p.43, 1997.

I. Dreyer, R. Dreyer, V. A. Chalkin, R. Radioanal, and . Lett, Studies of the migration rates of astatine compounds in an electric field, p.257, 1978.

K. Ticknor, Y. Cho, and J. , Nuclear Chem. Interaction of iodide and iodate with granitic fracture-filling minerals, p.75, 1990.

A. Sabatié-gogova, J. Champion, S. Huclier, N. Michel, F. Pottier et al.,

A. Montavon, . Chim, and . Acta, Characterization of At -species in simple and biological media by high performance anion exchange chromatography coupled to gamma detector, vol.721, p.182, 2012.
URL : https://hal.archives-ouvertes.fr/in2p3-00681129

R. A. Milius, W. H. Mclaughlin, R. M. Lambrecht, A. P. Wolf, J. J. Carroll et al., Int. J. Radiat. Appl. Instrum. Part A. Appl. Radiat. Isot. Organoastatine chemistry. Astatination via electrophilic destannylation, p.799, 1986.

J. Champion, M. Seydou, A. Sabatié-gogova, E. Renault, G. Montavon et al., Assessment of an effective quasirelativistic methodology designed to study astatine chemistry in aqueous solution, Phys. Chem. Chem. Phys, p.13, 2011.
URL : https://hal.archives-ouvertes.fr/in2p3-00617428

J. Champion, C. Alliot, E. Renault, B. M. Mokili, M. Chérel et al., Astatine standard redox potentials and speciation in acidic medium, J. Phys. Chem. A, p.576, 2010.
URL : https://hal.archives-ouvertes.fr/in2p3-00450771

J. Champion, A. Sabatié-gogova, F. Bassal, T. Ayed, C. Alliot et al., Investigation of astatine (III) hydrolyzed species: Experiments and relativistic calculations, J. Phys. Chem. A, p.117, 1983.
URL : https://hal.archives-ouvertes.fr/in2p3-00804191

J. Champion, C. Alliot, S. Huclier, D. Deniaud, Z. Asfari et al., Determination of stability constants between complexing agents and At (I) and At (III) species present at ultra-trace concentrations, Inorg. Chim. Acta, p.2654, 2009.
URL : https://hal.archives-ouvertes.fr/in2p3-00382733

P. J. Stephens, F. J. Devlin, C. Chabalowski, and M. J. Frisch, Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields, J. Phys. Chem, p.11623, 1994.

K. A. Peterson, D. Figgen, E. Goll, H. Stoll, and M. Dolg, Systematically convergent basis sets with relativistic pseudopotentials. II. Small-core pseudopotentials and correlation consistent basis sets for the post-d group 16-18 elements, J. Chem. Phys, vol.119, p.11113, 2003.

M. K. Armbruster, W. Klopper, and F. Weigend, Basis-set extensions for twocomponent spin-orbit treatments of heavy elements, Phys. Chem. Chem. Phys, vol.8, p.4862, 2006.

T. H. Dunning, Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen, J. Chem. Phys, p.1007, 1989.

R. A. Kendall, T. H. Dunning, and R. J. Harrison, Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions, J. Chem. Phys, p.6796, 1992.

E. J. Bylaska, W. A. Jong, N. Govind, K. Kowalski, T. P. Straatsma et al.,

J. Windus, P. Hammond, S. Nichols, M. T. Hirata, Y. Hackler et al.,

M. A. Smith, J. Nieplocha, V. Tipparaju, M. Krishnan, A. Vazquez-mayagoitia et al.,

M. Auer, L. D. Nooijen, E. Crosby, G. Brown, G. I. Cisneros et al.,

M. Dachsel, K. Deegan, D. Dyall, E. Elwood, M. Glendening et al., , 2009.

R. Ahlrichs, M. K. Armbruster, R. A. Bachorz, M. Bär, H. Baron et al.,

N. Böcker, P. Crawford, F. D. Deglmann, M. Sala, M. Diedenhofen et al.,

W. Kattannek, A. Klopper, C. Köhn, M. Kölmel, K. Kollwitz et al.,

H. Pabst, D. Patzelt, O. Rappoport, A. Rubner, U. Schäfer et al., TURBOMOLE version 6, vol.6, 2014.

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb et al.,

T. Montgomery, K. N. Vreven, J. C. Kudin, J. M. Burant, S. S. Millam et al.,

M. Mennucci, G. Cossi, N. Scalmani, G. A. Rega, H. Petersson et al.,

J. Fukuda, M. Hasegawa, T. Ishida, Y. Nakajima, O. Honda et al.,

P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo et al.,

R. Austin, C. Cammi, J. W. Pomelli, P. Y. Ochterski, K. Ayala et al.,

V. G. Dannenberg, S. Zakrzewski, A. D. Dapprich, M. C. Daniels, O. Strain et al.,

K. Rabuck, J. B. Raghavachari, J. V. Foresman, Q. Ortiz, A. G. Cui et al.,

G. Stefanov, A. Liu, P. Liashenko, I. Piskorz, R. L. Komaromi et al., , 2004.

D. R. Lide, LLC: New York. Handbook of chemistry and physics, 1998.

F. Bassal, PhD dissertation: Exploration des propriétés métalliques de At (+III): Approche théorique, 2013.

J. I. Amaro-estrada, L. Maron, and A. Ramírez-solís, Aqueous solvation of Hg(OH) 2 : Energetic and dynamical fensity functional theory studies of the Hg(OH) 2 -(H 2 O) n (n=1-24) structures, J. Phys. Chem. A, p.9069, 2013.

V. S. Bryantsev, M. S. Diallo, and W. A. Goddard-iii, Calculation of solvation free energies of charged solutes using mixed cluster/continuum models, J. Phys. Chem. A, vol.112, p.9709, 2008.

M. Pruszy?ski, A. Bilewicz, B. W?s, and B. Petelenz, Formation and stability of astatide-mercury complexes, J. Radioanal. Nucl. Chem, vol.268, p.91, 2006.

M. Pruszy?ski, A. Bilewicz, M. R. Zalutsky, and B. Chem, Preparation of Rh[16aneS4-diol] 211 At and Ir[16aneS4-diol] 211 At complexes as potential precursors for astatine radiopharmaceuticals, Part I: Synthesis, vol.19, p.958, 2008.

M. Pruszy?ski, M. ?yczko, A. Bilewicz, and M. R. Zalutsky, Stability and in vivo behavior of Rh[16aneS4-diol] 211 At complex: A potential precursor for astatine radiopharmaceuticals, WIREs Comput. Mol. Sci. Double-hybrid density functionals, vol.42, p.439, 2014.

M. Reiher and A. Wolf, Relativistic quantum chemistry: The fundamental theory of molecular science, 2009.

T. Ayed, M. Seydou, F. Réal, G. Montavon, and N. Galland, How does the solvation unveil AtO + reactivity?, J. Phys. Chem. B, vol.117, p.5206, 2013.
URL : https://hal.archives-ouvertes.fr/in2p3-00840063

T. Ayed, F. Réal, G. Montavon, and N. Galland, Rationalization of the solvation effects on the AtO + ground-state change, J. Phys. Chem. B, vol.117, p.10589, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01231233

D. Sergentu, D. Teze, A. Sabatié-gogova, C. Alliot, N. Guo et al., Advances on the determination of the astatine Pourbaix diagram: Predomination of AtO(OH) 2 ? over At ? in Basic Conditions, Chem. Eur. J, p.2964, 2016.
URL : https://hal.archives-ouvertes.fr/in2p3-01274072

J. Champion, M. Seydou, A. Sabatié-gogova, E. Renault, G. Montavon et al., Assessment of an effective quasirelativistic methodology designed to study astatine chemistry in aqueous solution, Phys. Chem. Chem. Phys, p.13, 2011.
URL : https://hal.archives-ouvertes.fr/in2p3-00617428

J. Champion, A. Sabatié-gogova, F. Bassal, T. Ayed, C. Alliot et al., Investigation of astatine (III) hydrolyzed species: Experiments and relativistic calculations, J. Phys. Chem. A, p.117, 1983.
URL : https://hal.archives-ouvertes.fr/in2p3-00804191

R. Maurice, F. Réal, A. S. Gomes, V. Vallet, G. Montavon et al., Effective bond orders from two-step spin-orbit coupling approaches: The I 2 , At 2 , IO + , and AtO + case studies, J. Chem. Phys, p.94305, 2015.
URL : https://hal.archives-ouvertes.fr/in2p3-01123856

D. S. Wilbur, Nat. Chem. Enigmatic astatine, issue.5, p.246, 2013.

S. Höfener, R. Ahlrichs, S. Knecht, L. Visscher, and C. , Relativistic and non-relativistic electronic molecular-structure calculations for dimers of 4p-, 5p-, and 6p-block elements, vol.13, p.3952, 2012.

A. S. Gomes and L. Visscher, Chem. Phys. Lett. The influence of core correlation on the spectroscopic constants of HAt, vol.399, p.1, 2004.

D. Yang and F. Wang, Structures and stabilities of group 17 fluorides EF 3 (E= I, At, and element 117) with spin-orbit coupling, Phys. Chem. Chem. Phys, vol.14, p.15816, 2012.

A. S. Gomes, F. Réal, N. Galland, C. Angeli, R. Cimiraglia et al., Phys. Chem. Chem. Phys. Electronic structure investigation of the evanescent AtO + ion, vol.16, p.9238, 2014.

J. Champion, M. Seydou, A. Sabatié-gogova, E. Renault, G. Montavon et al., Assessment of an effective quasirelativistic methodology designed to study astatine chemistry in aqueous solution, Phys. Chem. Chem. Phys, p.13, 2011.
URL : https://hal.archives-ouvertes.fr/in2p3-00617428

J. Champion, A. Sabatié-gogova, F. Bassal, T. Ayed, C. Alliot et al., Investigation of astatine (III) hydrolyzed species: Experiments and relativistic calculations, J. Phys. Chem. A, p.117, 1983.
URL : https://hal.archives-ouvertes.fr/in2p3-00804191