, Liste des publications

. Yasri-maria, . François, . Benoit, . Diler-erwan, . Thierry-dominique et al., Passive Wireless Sensor for Atmospheric Corrosion Monitoring, 8th European Conference on Antennas and Propagation, pp.6-11, 2014.

. Yasri-maria, . Rania, . Benoit, . Gallée-françois, . Diler-erwan et al.,

. Stéphane, Development of environmental sensors for monitoring of corrosion in marine offshore and wind energy industries, SCO 2014 : IEEE Sensor Systems for a Changing Ocean, pp.1-4, 2014.

R. Khalifeh and B. Lescop, François Gallée, et Stéphane Rioual, Développement d'un capteur radiofréquence de potentiel de corrosion de structures métalliques, Journée URSI, 2015.

M. Yasri, B. Lescop, S. Rioual, F. Gallée, E. Diler et al., Microwave characterization of materials during corrosion: Application to wireless sensors, European Microwave Week, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01257825

M. Yasri, B. Lescop, F. Gallée, E. Diler, and D. Thierry, Stéphane Rioual Développement d'un capteur de corrosion sans fil et passif énergétiquement, Journées Nationales des Micro-ondes, 2015.

M. Yasri, B. Lescop, F. Gallée, E. Diler, and D. Thierry, Stéphane Rioual, Fundamental basis of electromagnetic wave propagation in a zinc microstrip lines during its corrosion, Sensors and Actuators B : Chemical, 2015.

R. Khalifeh, B. , B. Lescop, F. Gallée, and S. , Development of a radio frequency resonator for monitoring water diffusion in organic coatings, Sensors and Actuators A : Physical, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01322727

, Leur utilisation se fera principalement dans un contexte de contrat industriel ou de recherche appliquée. Actuellement, des travaux de recherche sont menés au sein du laboratoire sur les topologies d'antennes multi-bande, multistandard intégrables dans des systèmes de communication. Actuellement, le réglage et l'optimisation des dimensions sont effectués de manière expérimentale. Mon objectif, à court terme, Concernant les outils d'aide à la conception d'antennes, l'objectif est au final de les exploiter pour la conception d'antennes ou de capteurs à base de structures résonantes

P. Cousin, Etude d'antennes mono-réflecteur à très large champ de vision : Conception de nouvelles antennes à zones de Fresnel et à réflecteur conformé, 1998.

F. Schäfer, F. Gallée, G. Landrac, and M. Ney, « Optimum reflector shapes for anticollision radar at 76 GHz », Microw. Opt. Technol. Lett, vol.24, issue.6, pp.400-404, 2000.

J. Ruze, « Wide-Angle Metal-Plate Optics, Proc. IRE, vol.38, pp.53-59

F. Gallee, G. Landrac, and M. M. Ney, « Artificial lens for third-generation automotive radar antenna at millimetre-wave frequencies, Antennas Propag. IEE Proc. -Microw, vol.150, pp.470-476, 2003.

J. Wenger, « Automotive radar -status and perspectives, IEEE Compound Semiconductor Integrated Circuit Symposium, 2005. CSIC '05, p.4, 2005.

A. Kuriyama, H. Nagaishi, H. Kuroda, and K. Takano, « A high efficiency antenna with horn and lens for 77 GHz automotive long range radar, 2016 46th European Microwave Conference (EuMC), pp.1525-1528, 2016.

, « Radar ACC AC20 Adaptive Cruise Control TRW Automotive

D. Sur,

A. Fischer, Z. Tong, A. Hamidipour, L. Maurer, and E. A. Stelzer, « 77-GHz Multi-Channel Radar Transceiver With Antenna in Package, IEEE Trans. Antennas Propag, vol.62, issue.3, pp.1386-1394, 2014.

M. Seyyedesfahlan, E. Öztürk, M. Kaynak, and E. I. Tekin, « 77-GHz Four-Element Phased-Array Radar Receiver Front End, IEEE Trans. Compon. Packag. Manuf. Technol, vol.6, issue.8, pp.1162-1173, 2016.

K. F. Chang, « 77-GHz Automotive Radar Sensor System With Antenna Integrated Package, IEEE Trans. Compon. Packag. Manuf. Technol, vol.4, issue.2, pp.352-359, 2014.

, « Mid-range radar sensor (MRR)

D. Sur, en/products-and-services/passenger-cars-and-light-commercial-vehicles/driverassistance-systems/predictive-emergency-braking-system/mid-range-radar-sensor-(mrr)

M. Murad, J. Nickolaou, G. Raz, J. S. Colburn, and K. Geary, « Next generation short range radar (SRR) for automotive applications, 2012 IEEE Radar Conference, pp.214-0219, 2012.

«. Single, Chip 76-to-81GHz Automotive Radar Sensor Integrating DSP and MCU | TI

«. Multi, -channel 77GHz Radar Transceiver Chipset|NXP

D. Sur,

S. Lin, K. B. Ng, H. Wong, K. M. Luk, S. S. Wong et al., « A 60GHz digitally controlled RF beamforming array in 65nm CMOS with off-chip antennas, 2011 IEEE Radio Frequency Integrated Circuits Symposium, pp.1-4, 2011.

D. Huang, L. Zhang, D. Li, L. Zhang, and Y. Wang, « A 60GHz 360?? digitally controlled phase shifter with 6-bit resolution and 2.3?? maximal rms phase error in 65nm CMOS technology, 2015 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), pp.31-33, 2015.

Y. Pinto, « 79GHz integrated antenna on low resistivity Si BiCMOS exploiting above-IC processing, 2009 3rd European Conference on Antennas and Propagation, pp.3539-3543, 2009.

C. Calvez, « New millimeter wave packaged antenna array on IPD technology, 2010 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF), pp.96-99, 2010.

V. Puyal, D. Dragomirescu, C. Villeneuve, J. Ruan, P. Pons et al., « Frequency Scalable Model for MEMS Capacitive Shunt Switches at Millimeter-Wave Frequencies, IEEE Trans. Microw. Theory Tech, vol.57, issue.11, pp.2824-2833, 2009.

A. Yehezkely and S. Kupferman, Modular millimeter-wave radio frequency system », US20120309331 A1, pp.6-2012

C. Gustafson, K. Haneda, S. Wyne, and F. Tufvesson, « On mm-Wave Multipath Clustering and Channel Modeling, IEEE Trans. Antennas Propag, vol.62, issue.3, pp.1445-1455, 2014.

C. Kim, T. Kim, and J. Y. Seol, Multi-beam transmission diversity with hybrid beamforming for MIMO-OFDM systems, pp.61-65, 2013.

S. Ranvier, C. Icheln, and P. Vainikainen, « Measurement-Based Mutual Information Analysis of MIMO Antenna Selection in the 60-GHz Band, IEEE Antennas Wirel. Propag. Lett, vol.8, pp.686-689, 2009.

D. E. Berraki, T. H. Barratt, M. A. Beach, S. M. Armour, and A. R. Nix, Practical Demonstration of Limited Feedback Beamforming for mmWave Systems, pp.1-5, 2015.

M. Cabedo-fabres, E. Antonino-daviu, A. Valero-nogueira, and M. F. Bataller, « The Theory of Characteristic Modes Revisited: A Contribution to the Design of Antennas for Modern Applications, IEEE Antennas Propag. Mag, vol.49, issue.5, pp.52-68, 2007.

I. J. Bahl and P. Bhartia, Microstrip antennas. Arech House, 1980.

K. F. Lee and K. M. Luk, Microstrip Patch Antennas, 2011.

R. Garbacz and R. Turpin, A generalized expansion for radiated and scattered fields, IEEE Trans. Antennas Propag, vol.19, issue.3, pp.348-358, 1971.

R. Harrington and J. Mautz, « Theory of characteristic modes for conducting bodies, IEEE Trans. Antennas Propag, vol.19, issue.5, pp.622-628, 1971.

R. Harrington, J. Mautz, and Y. Chang, « Characteristic modes for dielectric and magnetic bodies, IEEE Trans. Antennas Propag, vol.20, issue.2, pp.194-198, 1972.

H. W. Son and C. S. Pyo, « Design of RFID tag antennas using an inductively coupled feed », Electron. Lett, vol.41, pp.994-996, 2005.

F. Gallée, T. Bernabeu, M. Cabedo-fabrès, E. A. Daviu, and A. V. Nogueira, « Application of the theory of characteristic modes to the design of compact metallic strip antenna with multilayer technology (LTCC), 2013 7th European Conference on Antennas and Propagation (EuCAP), pp.1891-1895, 2013.

R. K. Mongia, C. L. Larose, S. R. Mishra, and P. Bhartia, « Measurement of RCS of cylindrical and rectangular dielectric resonators, Electron. Lett, vol.28, 1953.

B. K. Lau, D. Manteuffel, H. Arai, S. V. Hum, and . Guest, Editorial Theory and Applications of Characteristic Modes, IEEE Trans. Antennas Propag, vol.64, issue.7, pp.2590-2594, 2016.

M. A. Ali, S. Tabassum, Q. Wang, Y. Wang, R. Kumar et al., « Plasmonic-electrochemical dual modality microfluidic sensor for cancer biomarker detection, 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS, pp.390-393, 2017.

V. H. Perez-gonzalez, R. C. Gallo-villanueva, S. Camacho-leon, J. I. Gomez-quiñones, J. M. Rodriguez-delgado et al., Emerging microfluidic devices for cancer cells/biomarkers manipulation and detection, IET Nanobiotechnol, vol.10, issue.5, pp.263-275, 2016.

L. D. Quang, « Dielectrophoresis enrichment with built-in capacitive sensor microfluidic platform for tumor rare cell detection, 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS, pp.484-487, 2017.

G. Flores, F. Perdigones, C. Aracil, M. Cabello, and J. M. Quero, « Microfluidic platform with absorbance sensor for glucose detection, 2015 10th Spanish Conference on Electron Devices (CDE), pp.1-4, 2015.

J. C. Chou, « Fabrication and Characteristic Analysis of a Remote Real-Time Monitoring Applied to Glucose Sensor System Based on Microfluidic Framework, IEEE Sens. J, vol.15, issue.6, pp.3234-3240, 2015.

D. Stuerga, Key Ingredients for Mastery of Chemical Microwave Processes, Microwave-Material Interactions and Dielectric Properties, pp.1-61, 2006.

L. Du and J. Zhe, « A microfluidic inductive pulse sensor for real time detection of machine wear, 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems, pp.1079-1082, 2011.

J. C. Lötters, J. Groenesteijn, E. J. Van-der-wouden, W. Sparreboom, T. S. Lammerink et al., « Fully integrated microfluidic measurement system for real-time determination of gas and liquid mixtures composition, 2015 Transducers -2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), pp.1798-1801, 2015.

A. A. Abduljabar, N. Clark, J. Lees, and A. Porch, « Dual Mode Microwave Microfluidic Sensor for Temperature Variant Liquid Characterization, IEEE Trans. Microw. Theory Tech, vol.65, issue.7, pp.2572-2582, 2017.

A. Ebrahimi, W. Withayachumnankul, S. Al-sarawi, E. D. Abbott, and . High, Sensitivity Metamaterial-Inspired Sensor for Microfluidic Dielectric Characterization, IEEE Sens. J, vol.14, issue.5, pp.1345-1351, 2014.

A. A. Bahar, Z. Zakaria, S. R. Rashid, A. A. Isa, R. A. Alahnomi et al., « Microfluidic planar resonator sensor with highly precise measurement for microwave applications, 2017 11th European Conference on Antennas and Propagation, pp.1843-1846, 2017.

E. Topsakal, T. Karacolak, and E. C. Moreland, « Glucose-dependent dielectric properties of blood plasma, XXXth URSI General Assembly and Scientific Symposium, pp.1-4, 2011.

T. Chen, D. Dubuc, M. Poupot, J. J. Fournie, and K. Grenier, Accurate Nanoliter Liquid Characterization Up to 40 GHz for Biomedical Applications: Toward Noninvasive Living Cells Monitoring, vol.60, pp.4171-4177
URL : https://hal.archives-ouvertes.fr/inserm-02475433

A. A. Abduljabar, D. J. Rowe, A. Porch, and D. A. Barrow, « Novel Microwave Microfluidic Sensor Using a Microstrip Split-Ring Resonator, IEEE Trans. Microw. Theory Tech, vol.62, issue.3, pp.679-688, 2014.

E. Silavwe, N. Somjit, and I. D. Robertson, « A Microfluidic-Integrated SIW Lab-on-Substrate Sensor for Microliter Liquid Characterization, IEEE Sens. J, vol.16, pp.7628-7635, 2016.

W. Su, B. S. Cook, and M. M. Tentzeris, « Additively Manufactured Microfluidics-Based #x201C;Peel-and-Replace #x201D; RF Sensors for Wearable Applications, IEEE Trans. Microw. Theory Tech, vol.64, issue.6, pp.1928-1936, 2016.

S. Bouaziz, F. Chebila, A. Traille, P. Pons, H. Aubert et al., « A new millimeter-wave micro-fluidic temperature sensor for wireless passive radar interrogation, IEEE Sensors, pp.1-4, 2012.

S. Liu, I. Ocket, D. Schreurs, B. Nauwelaers, and W. D. Raedt, « A 60 GHz liquid sensing substrate integrated cavity in LTCC, 2013 European Microwave Conference, pp.613-615, 2013.

P. Kildal, Waveguides and Transmission Lines in Gaps Between Parallel Conducting Surfaces, pp.15-2010

P. S. Kildal, E. Alfonso, and A. Valero-nogueira, Rajo-Iglesias, « Local Metamaterial-Based Waveguides in Gaps Between Parallel Metal Plates, IEEE Antennas Wirel. Propag. Lett, vol.8, pp.84-87, 2009.

P. S. , « Artificially soft and hard surfaces in electromagnetics and their application to antenna design, 1993 23rd European Microwave Conference, pp.30-33, 1993.

A. Polemi, S. Maci, and P. S. , « Dispersion Characteristics of a Metamaterial-Based Parallel-Plate Ridge Gap Waveguide Realized by Bed of Nails, IEEE Trans. Antennas Propag, vol.59, issue.3, pp.904-913, 2011.

M. Bozzi, A. Georgiadis, and K. Wu, « Review of substrate-integrated waveguide circuits and antennas, IET Microw. Antennas Propag, vol.5, issue.8, p.909, 2011.

D. Deslandes and K. Wu, « Accurate modeling, wave mechanisms, and design considerations of a substrate integrated waveguide, IEEE Trans. Microw. Theory Tech, vol.54, issue.6, pp.2516-2526, 2006.

K. A. Peterson, « LTCC in microelectronics, microsystems, and sensors, 2008 15th International Conference on Mixed Design of Integrated Circuits and Systems, pp.23-37, 2008.

M. Maksimovi?, « Application of a LTCC sensor for measuring moisture content of building materials, Constr. Build. Mater, vol.26, issue.1, pp.327-333

M. Ma, Z. Liu, W. Shan, Y. Li, K. Kalantar-zadeh et al., « Passive wireless gas sensors based on the LTCC technique, 2015 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), pp.1-3, 2015.

Y. Li, L. Hu, Z. Xu, and J. Zhou, « A Ka-band transceiver module based on LTCC technology, 2015 IEEE 6th International Symposium on Microwave, Antenna, Propagation, and EMC Technologies (MAPE), pp.600-603, 2015.

W. Yang, Y. Yang, W. Che, C. Fan, and Q. Xue, « 94-GHz Compact Two-Dimensional Multi-Beam LTCC Antenna Based on Multi-folded SIW Beam-Forming Network, IEEE Trans. Antennas Propag, pp.1-1, 2017.

F. Sickinger and E. Weissbrodt, « 76 #x2013;81GHz fully planar and array compatible LTCC antenna element for automotive radar sensors, 2016 46th European Microwave Conference (EuMC), pp.1564-1567, 2016.

H. Alaaeddine, O. Tantot, N. Delhote, D. Passerieux, and E. S. Vedeyme, « Resonance of stacked rings in LTCC technology for non-destructive characterisation sensor at 150 GHz, 2012 42nd European Microwave Conference, pp.108-111, 2012.

C. Kärnfelt, B. Zhang, and H. Zirath, « A QFN packaged grid array antenna in low dielectric constant LTCC for D-band applications, 2016 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), pp.1-4, 2016.

K. H. Rida, Packaging of Microwave Integrated Circuits in LTCC Technology », Theses, Télécom Bretagne, 2013.

P. S?obodzian, J. Macioszczyk, K. Malecha, and L. Golonka, « A LTCC microwave-microfluidic reactor, 2016 21st International Conference on Microwave, Radar and Wireless Communications (MIKON), pp.1-4, 2016.

D. Belavi?, « LTCC-based ceramic microsystems with integrated fluidic elements and sensors, 2016 International Conference and Exposition on Electrical and Power Engineering (EPE), pp.42-046, 2016.

J. N. Schianti, M. R. Gongora-rubio, T. A. Horoiwa, N. N. Cerize, and A. M. Oliveira, Water-indiesel nanoemulsion by LTCC microfluidic devices, 2014 IEEE 9th IberoAmerican Congress on Sensors, pp.1-4, 2014.

C. Arenas-buendia, F. Gallée, A. Valero-nogueira, and E. C. Person, « RF sensor based on gap waveguide technology in LTCC for liquid sensing, 2015 9th European Conference on Antennas and Propagation (EuCAP), pp.1-4, 2015.

L. R. Hilbert, «. Inspection, . Monitoring, . Corrosion, . Monopile-foundations-» et al., , 2011.

M. Yasri, « Capteur de corrosion passif et sans contact », phdthesis, 2016.

R. Khalifeh, « Développement de résonateurs hyperfréquences pour la réalisation de capteurs sans puce dédiés à la maintenance prédictive des infrastructures », phdthesis, 2016.

J. , « Capteurs microondes en bande ISM pour la caractérisation de matériaux en champ proche et pour le suivi de l'évolution de la corrosion, 2014.

M. Kouril, T. Prosek, B. Scheffel, and F. Dubois, « High sensitivity electrical resistance sensors for indoor corrosion monitoring, Corros. Eng. Sci. Technol, vol.48, issue.4, pp.282-287, 2013.

S. Li, Y. Kim, S. Jung, H. Song, and S. Lee, « Application of steel thin film electrical resistance sensor for in situ corrosion monitoring, Sens. Actuators B Chem, vol.120, issue.2, pp.368-377, 2007.

T. Prosek, « Real-time monitoring of indoor air corrosivity in cultural heritage institutions with metallic electrical resistance sensors, Stud. Conserv, vol.58, issue.2, pp.117-128, 2013.

J. Demo, F. Friedersdorf, C. Andrews, and M. Putic, « Wireless corrosion monitoring for evaluation of aircraft structural health, 2012 IEEE Aerospace Conference, pp.1-10, 2012.

N. F. Materer and A. W. Apblett, « Passive wireless corrosion sensor, vol.2, pp.9-2010

Y. He, G. Tian, H. Zhang, M. Alamin, A. Simm et al., « Steel Corrosion Characterization Using Pulsed Eddy Current Systems, IEEE Sens. J, vol.12, issue.6, pp.2113-2120

A. I. Sunny, G. Y. Tian, J. Zhang, and M. Pal, « Low frequency (LF) RFID sensors and selective transient feature extraction for corrosion characterisation, Sens. Actuators Phys, vol.241, pp.34-43, 2016.

J. Zhang and G. Y. Tian, « UHF RFID Tag Antenna-Based Sensing for Corrosion Detection #x0026

, Characterization Using Principal Component Analysis, IEEE Trans. Antennas Propag, vol.64, issue.10, pp.4405-4414, 2016.

. «-le-tableau, national de répartition des bandes de fréquences, pp.6-2016

D. Sur,

A. Vena, E. Perret, and E. S. Tedjini, « Chipless RFID Tag Using Hybrid Coding Technique, IEEE Trans. Microw. Theory Tech, vol.59, pp.3356-3364, 2011.

A. Ramos, E. Perret, O. Rance, S. Tedjini, A. Lázaro et al., « Temporal Separation Detection for Chipless Depolarizing Frequency-Coded RFID, IEEE Trans. Microw. Theory Tech, vol.64, issue.7, pp.2326-2337, 2016.

M. Borgese, F. A. Dicandia, F. Costa, S. Genovesi, and G. Manara, « An Inkjet Printed Chipless RFID Sensor for Wireless Humidity Monitoring, IEEE Sens. J, vol.17, pp.4699-4707, 2017.

E. Perret, R. S. Nair, E. B. Kamel, A. Vena, and E. S. Tedjini, « Chipless RFID tags for passive wireless sensor grids, XXXIth URSI General Assembly and Scientific Symposium, pp.1-4, 2014.

A. Vena, L. Sydänheimo, M. M. Tentzeris, and L. Ukkonen, « A Fully Inkjet-Printed Wireless and Chipless Sensor for CO2 and Temperature Detection, IEEE Sens. J, vol.15, issue.1, pp.89-99, 2015.

S. Sauer and W. J. Fischer, « A Passive Wireless Humidity Threshold Monitoring Sensor Principle Based on Deliquescent Salts and a Diffusion Based Irreversible State Change, IEEE Sens. J, vol.14, issue.4, pp.971-978, 2014.